[SDOI2017]天才黑客
题目大意
给一张有向图,再给一颗字典树,有向图上的每条边有一个非负边权还有一个字典树上的字符串,从一条边到另一条边的代价是那条边的边权和这两个字符串的最长公共前缀,问从1到其他点的最短路、
题解
一看肯定是一个最短路问题,现在的关键问题是如何把这张图建出来。
我们可以枚举每个点作为两条边的中转点,然后直接把每条边看作一个点,对应的去连边复杂度肯定不对。
我们发现对于所有点,和它们相连的所有边的总和是\(O(m)\)的,所以我们考虑对每个点,对它相邻的所有边建一个虚树。
然后观察到两条边代表的字符串的最长公共前缀也是它们在字典树上的\(LCA\),所以我们在虚树上枚举\(LCA\),然后再去枚举进来的边,那么可以作为连出去的边在虚树上的\(dfs\)序是一段或两段连续的区间,然后再对\(dfs\)序建线段树优化一下连边就可以了。
代码
写了大半天,自闭了。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<vector>
#define mm make_pair
#define P pair<int,int>
#define N 100009
#define ls tr[cnt].l
#define rs tr[cnt].r
using namespace std;
typedef long long ll;
priority_queue<pair<ll,int> >q;
int dfn[N],head[N*30],deep[N],p[20][N],tot,a[N],st[N],top,rbs[N],rot,num,_tag[N],tott,df[N],ddf,size[N],rt1,rt2,n,m,k;
ll dis[N*30];
bool vis[N*30];
vector<int>vec[N],ed[N],ru[N],chu[N],co1[N],co2[N];
vector<int>::iterator it;
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline bool cmp(int a,int b){return dfn[a]<dfn[b];}
struct edge{int n,to,l;}e[N*30];
struct seg{int l,r;}tr[N*30];
inline void link2(int u,int v,int l){e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;}
inline void link(int u,int v){ed[u].push_back(v);}
struct node{int a,b,c,d;}b[N];
inline void spfa(int s){
memset(dis,0x3f,sizeof(dis));
for(it=chu[s].begin();it!=chu[s].end();++it)dis[*it]=b[*it].c,q.push(mm(0,*it));
while(!q.empty()){
int u=q.top().second;q.pop();
if(vis[u])continue;
vis[u]=1;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to,x=v<=m?b[v].c:0;
if(dis[v]>dis[u]+e[i].l+x){
dis[v]=dis[u]+e[i].l+x;
q.push(mm(-dis[v],v));
}
}
}
}
void dfs(int u){
dfn[u]=++dfn[0];
for(int i=1;(1<<i)<=deep[u];++i)p[i][u]=p[i-1][p[i-1][u]];
for(vector<int>::iterator it=vec[u].begin();it!=vec[u].end();++it){
int v=*it;deep[v]=deep[u]+1;p[0][v]=u;
dfs(v);
}
}
inline int getlca(int u,int v){
if(deep[u]<deep[v])swap(u,v);
for(int i=19;i>=0;--i)if(deep[u]-(1<<i)>=deep[v])u=p[i][u];
if(u==v)return u;
for(int i=19;i>=0;--i)if(p[i][u]!=p[i][v])u=p[i][u],v=p[i][v];
return p[0][u];
}
inline void get_tree(){
sort(a+1,a+num+1);
num=unique(a+1,a+num+1)-a-1;
sort(a+1,a+num+1,cmp);
st[top=1]=a[1];rbs[rbs[0]=1]=a[1];rot=a[1];
for(int i=2;i<=num;++i){
if(st[top]==a[i])continue;
int x=a[i],lca=getlca(a[i],st[top]);
if(lca==st[top]){st[++top]=a[i];rbs[++rbs[0]]=a[i];continue;}
while(top>1){
int x=st[top],y=st[top-1];top--;
if(dfn[lca]>=dfn[y]){
link(lca,x);break;
}
link(y,x);
}
if(dfn[lca]<dfn[st[top]]){
link(lca,st[top]);top--;
if(dfn[lca]<dfn[rot])rot=lca;
}
if(st[top]!=lca){st[++top]=lca;rbs[++rbs[0]]=lca;}
if(st[top]!=x){st[++top]=x;rbs[++rbs[0]]=x;}
}
while(top>1){link(st[top-1],st[top]);top--;}
}
int build(int l,int r,int tag){
int cnt=++tott;tr[cnt].l=tr[cnt].r=0;
if(l==r){
int x=_tag[l];
if(!tag){
for(vector<int>::iterator it=co1[x].begin();it!=co1[x].end();++it)link2(*it,cnt,0);
}
if(tag){
for(vector<int>::iterator it=co2[x].begin();it!=co2[x].end();++it)link2(cnt,*it,0);
}
return cnt;
}
int mid=(l+r)>>1;
ls=build(l,mid,tag);rs=build(mid+1,r,tag);
if(!tag)link2(ls,cnt,0),link2(rs,cnt,0);
else link2(cnt,ls,0),link2(cnt,rs,0);
return cnt;
}
void upd(int cnt,int l,int r,int L,int R,int tag,int x,int len){
if(l>=L&&r<=R){
if(!tag)link2(cnt,x,len);
else link2(x,cnt,len);
return;
}
int mid=(l+r)>>1;
if(mid>=L)upd(ls,l,mid,L,R,tag,x,len);
if(mid<R)upd(rs,mid+1,r,L,R,tag,x,len);
}
void dfs2(int u){
df[u]=++ddf; _tag[ddf]=u;size[u]=1;
for(vector<int>::iterator it=ed[u].begin();it!=ed[u].end();++it){
int v=*it;
dfs2(v);
size[u]+=size[v];
}
}
void dfs3(int u){
int nw=df[u],en=df[u]+size[u]-1,sz=0;
int x=++tott;
upd(rt1,1,ddf,nw,nw,0,x,0);
upd(rt2,1,ddf,nw,en,1,x,deep[u]);
for(vector<int>::iterator it=ed[u].begin();it!=ed[u].end();++it){
int v=*it;
dfs3(v);x=++tott;
int L=nw+sz+1,R=nw+sz+size[v];
upd(rt1,1,ddf,L,R,0,x,0);
if(L>nw)upd(rt2,1,ddf,nw,L-1,1,x,deep[u]);
if(R<en)upd(rt2,1,ddf,R+1,en,1,x,deep[u]);
sz+=size[v];
}
}
inline void unit(){
memset(vis,0,sizeof(vis));
memset(head,0,sizeof(head));
memset(p,0,sizeof(p));
tot=0;
tott=0;dfn[0]=0;
for(int i=1;i<=n;++i){
ru[i].clear();chu[i].clear();
}
for(int i=1;i<=k;++i)vec[i].clear();
}
int main(){
int T=rd();
while(T--){
n=rd();m=rd();k=rd();
int u,v,w;
for(int i=1;i<=m;++i){
b[i].a=rd();b[i].b=rd();b[i].c=rd();b[i].d=rd();
ru[b[i].b].push_back(i);
chu[b[i].a].push_back(i);
}
tott=m;
for(int i=1;i<k;++i){
u=rd();v=rd();w=rd();
vec[u].push_back(v);
}
dfs(1);
for(int i=1;i<=n;++i){
if(ru[i].empty()||chu[i].empty())continue;
num=0;
for(it=ru[i].begin();it!=ru[i].end();++it)a[++num]=b[*it].d,co1[a[num]].push_back(*it);
for(it=chu[i].begin();it!=chu[i].end();++it)a[++num]=b[*it].d,co2[a[num]].push_back(*it);
get_tree();
dfs2(rot);
rt1=build(1,ddf,0);
rt2=build(1,ddf,1);
dfs3(rot);
for(int j=1;j<=num;++j)co1[a[j]].clear(),co2[a[j]].clear();
ddf=0;
while(rbs[0]){
int x=rbs[rbs[0]];
ed[x].clear();
rbs[0]--;
}
}
spfa(1);
for(int i=2;i<=n;++i){
ll ans=1e18;
for(it=ru[i].begin();it!=ru[i].end();++it)ans=min(ans,dis[*it]);
printf("%lld\n",ans);
}
unit();
}
return 0;
}
[SDOI2017]天才黑客的更多相关文章
- [LOJ#2270][BZOJ4912][SDOI2017]天才黑客
[LOJ#2270][BZOJ4912][SDOI2017]天才黑客 试题描述 SD0062 号选手小 Q 同学为了偷到 SDOI7012 的试题,利用高超的黑客技术潜入了 SDOI 出题组的内联网的 ...
- 【LG3783】[SDOI2017]天才黑客
[LG3783][SDOI2017]天才黑客 题面 洛谷 题解 首先我们有一个非常显然的\(O(m^2)\)算法,就是将每条边看成点, 然后将每个点的所有入边和出边暴力连边跑最短路,我们想办法优化这里 ...
- Luogu P3783 [SDOI2017]天才黑客
题目大意 一道码量直逼猪国杀的图论+数据结构题.我猪国杀也就一百来行 首先我们要看懂鬼畜的题意,发现其实就是在一个带权有向图上,每条边有一个字符串信息.让你找一个点出发到其它点的最短路径.听起来很简单 ...
- [SDOI2017]天才黑客[最短路、前缀优化建图]
题意 一个 \(n\) 点 \(m\) 边的有向图,还有一棵 \(k\) 个节点的 trie ,每条边上有一个字符串,可以用 trie 的根到某个节点的路径来表示.每经过一条边,当前携带的字符串就会变 ...
- BZOJ4912 SDOI2017天才黑客(最短路+虚树)
容易想到把边当成点重建图跑最短路.将每条边拆成入边和出边,作为新图中的两个点,由出边向入边连边权为原费用的边.对于原图中的每个点,考虑由其入边向出边连边.直接暴力两两连边当然会被卡掉,注意到其边权是t ...
- BZOJ4912 : [Sdoi2017]天才黑客
建立新图,原图中每条边在新图中是点,点权为$w_i$,边权为两个字符串的LCP. 对字典树进行DFS,将每个点周围一圈边对应的字符串按DFS序从小到大排序. 根据后缀数组利用height数组求LCP的 ...
- BZOJ4912 [Sdoi2017]天才黑客 【虚树 + 最短路】
题目链接 BZOJ4912 题解 转移的代价是存在于边和边之间的 所以把边看做点,跑最短路 但是这样做需要把同一个点的所有入边和所有出边之间连边 \(O(m^2)\)的连边无法接受 需要优化建图 膜一 ...
- bzoj 4912: [Sdoi2017]天才黑客
Description Solution 这个题和点没什么关系 , 之和边与边之间关系有关 , 我们就把边看作点 , 边权就是 \(lcp\) , 点权看作这条边本来的权值. 现在考虑两两连边 , \ ...
- 洛谷P3783 [SDOI2017]天才黑客(前后缀优化建图+虚树+最短路)
题面 传送门 题解 去看\(shadowice\)巨巨写得前后缀优化建图吧 话说我似乎连线段树优化建图的做法都不会 //minamoto #include<bits/stdc++.h> # ...
随机推荐
- DevOps概述
Devops概念 转载自 devops实践-开篇感想 DevOps(英文Development和Operations的组合)是一组过程.方法与系统的统称,用于促进开发(应用程序/软件工程).技术运营和 ...
- JavaScript常用代码书写规范
javascript 代码规范 代码规范我们应该遵循古老的原则:“能做并不意味着应该做”. 全局命名空间污染 总是将代码包裹在一个立即的函数表达式里面,形成一个独立的模块. 不推荐 , y = ; c ...
- Sublime Text3介绍和插件安装——基于Python开发
Subime编辑器是一款轻量级的代码编辑器,是收费的,但是可以无限期使用.官网下载地址:https://www.sublimetext.com. Sublime Text3支持语言开发种类多样,几乎可 ...
- mysql入门知识
数据库 什么是数据库就是存储数据的仓库(容器) 存储数据的方式1.变量 无法永久存储2.文件处理 ,可以永久存储 文件处理存在的弊端: 1.文件处理速度慢 2.文件只能在自己的计算机上读写 无法被共享 ...
- Hacking HackDay: Albania
概述: Name: HackDay: Albania Date release: 18 Nov 2016 Author: R-73eN Series: HackDay 下载: https://down ...
- 在SuperMap iDesktop中如何快速追加记录行?
SuperMap iDesktop 产品中,普通数据集右键查看属性表,无法编辑行.是因为要直接在属性表中添加行,只能是纯属性数据集才可用. 除了直接打开数据集,增加几何对象,还有什么办法可以快速追加记 ...
- docker 集群 zookeeper 碰到 java.net.NoRouteToHostException: Host is unreachable (Host unreachable)
最近在学 zookeeper ,按照 docker 官网的方式集群 zookeeper , 然后发现有路由找不到.最后问题解决了,随手记录下来. 原因是 firewalld 的没有信任 docker ...
- 数据库原理 - 序列7 - Binlog与主从复制
本文节选自作者书籍<软件架构设计:大型网站技术架构与业务架构融合之道>.作者微信公众号:架构之道与术.公众号底部菜单有书友群可以加入,与作者和其他读者进行深入讨论.也可以在京东.天猫上购买 ...
- 如何学好java
今天发现这么一篇文章,对于笔者谈的:"一方面很努力学习,一方面又觉得不踏实",我感同身受.觉得文章写得不错,在此献给一些在java中努力的朋友们,希望能有所收获. 文章原内容: 近 ...
- [SNOI2017]炸弹
嘟嘟嘟 这题有一些别的瞎搞神奇做法,而且复杂度似乎更优,不过我为了练线段树,就乖乖的官方正解了. 做法就是线段树优化建图+强连通分量缩点+DAGdp. 如果一个炸弹\(i\)能引爆另一个炸弹\(j\) ...