今天模拟赛有一道林克卡特树,完全没有思路

赛后想了一想,不就是求\(k+1\)条不相交的链,使其权值之和最大嘛,傻了。

有一个最裸的\(DP\),设\(f[i][j][k]\)表示在以\(i\)为根的子树中,选了\(j\)条链,\(k=0\)表示\(i\)不在链上,\(k=1\)表示\(i\)是链的一端,\(k=2\)表示\(i\)在链的中间

这样就随便转移了,就是个\(O(nk^2)\)的树上背包

然后呢,又傻了,这能怎么优化?

我先在这里Orz一下大佬BLUESKY007,没有学过wqs二分,发现了\(f\)数组关于\(k\)的单调性,一波二分直接A了 %%%%%%

没错,我们需要用这个单调性来进行优化。据官方题解称,假设你闲着没事,把\(k=0-100\)的表打了一下,你就会发现这个上凸函数,但是如果并没有闲心,那我们就大胆的猜一下。

当\(k\)很小的时候,我们肯定先删负权边,这样最大权值和就增大了。当负权边不够用了怎么办,我们就只能开始删正权边,这种情况貌似比较复杂,先来看看正权边删的很多的情况。随着正权边越删越多,最大权值和肯定有一个下降的趋势,这样随着\(k\)的增大,\(f\)就呈现出一个先增后减的趋势,也许\(f\)是一个上凸函数?猜对啦,确实是的

接下来我们需要一个叫wqs二分的优化方法,它经常被用于这样的问题:有\(n\)个带权物品,用满足一定限制的方法选\(m\)个,使得其权值和取最值,而且权值和的最值是关于\(m\)的凸函数。设在取\(x\)个物品时的权值和为\(f(x)\),那么\(f(x)\)的图像大概长这个样子:



那我们该怎么知道\(f(m)\)呢,因为\(f(x)\)是凸的,考虑用一条直线去切它。就像这样:



这样我们就得到了一条斜率为\(k\),解析式为\(y=kx+b\)的直线,上下移动这条直线,你会发现在切点处的截距\(b\)是最大的:



而且切点处\(b=f(x)-kx\),假设我们能找到最大的\(b\)并顺便记录切点的位置,不就能计算\(f(x)\)的值了吗?观察\(b\)的表达式,发现如果我们给每个物品加上一个附加权值\(-k\),然后求出来的最大权值\(f'(x)\)和\(f(x)-kx\)是等价的,于是\(b_{max}=max\{f'(x)\}\),这个式子没有数量限制,直接\(DP\)就行了,中间顺便记录最佳决策点\((x_{max},b_{max})\)。这样的话,就能算出来\(f(x)=kx_{max}+b_{max}\)。用因为我们知道了\(x_{max}\),拿它跟\(m\)比较,就知道是该增大还是减小斜率\(k\),这也提示了我们可以二分斜率

还有一个比较重要的细节,就是\(b\)的最佳决策点可能不止一个,也就是说当前的这条直线跟图像有多个切点,这样我们便无法得知\(m\)在左边还是右边了。我们可以通过一个策略来解决这个问题,就是取\(x\)最大的最佳决策点,最后直接把\(x_{max}\)带入求出\(f(m)\)就行了

以下是帮助你取得大师之剑的代码(滑稽):

#include <bits/stdc++.h>

using namespace std;

//dp+wqs二分
//首先把问题转化为求树上k+1条不相交路径,使其权值和最大 #define N 300000
#define ll long long
#define INF 10000000000000 //INF不能太大,也不能太小 int n, k, eid, head[N+5];
ll m; struct Edge {
int next, to, w;
}e[2*N+5]; struct DP { //为了方便重载了运算符
ll v;
int cnt;
DP operator + (DP rhs) {
return DP{v+rhs.v, cnt+rhs.cnt};
}
bool operator < (DP rhs) const {
return v < rhs.v || (v == rhs.v && cnt < rhs.cnt);
}
}f[3][N+5], temp; void addEdge(int u, int v, int w) {
e[++eid].next = head[u];
e[eid].to = v;
e[eid].w = w;
head[u] = eid;
} DP Max(int u) {
return max(f[0][u], max(f[1][u], f[2][u]));
} DP newDP(DP &a, ll v0, int cnt0) {
return DP{a.v+v0, a.cnt+cnt0};
} void dp(int u, int fa) {
f[0][u] = DP{0, 0}, f[1][u] = DP{-INF, 0}, f[2][u] = DP{-m, 1};
int i, v, w;
for(i = head[u]; i; i = e[i].next) {
v = e[i].to, w = e[i].w;
if(v == fa) continue;
dp(v, u);
temp = Max(v);
f[2][u] = max(f[2][u]+temp, f[1][u]+max(newDP(f[0][v], w, 0), newDP(f[1][v], w+m, -1)));
f[1][u] = max(f[1][u]+temp, f[0][u]+max(newDP(f[0][v], w-m, +1), newDP(f[1][v], w, 0)));
f[0][u] = f[0][u]+temp;
}
} void check() {
dp(1, 0);
} int main() {
scanf("%d%d", &n, &k); k++;
for(int i = 1, x, y, z; i <= n-1; ++i) {
scanf("%d%d%d", &x, &y, &z);
addEdge(x, y, z), addEdge(y, x, z);
}
ll l = -INF, r = INF, ans; //二分斜率
while(l <= r) {
m = (l+r)>>1;
check();
if(Max(1).cnt < k) r = m-1;
else l = m+1, ans = m;
}
m = ans;
check();
printf("%lld\n", Max(1).v+ans*k);
return 0;
}

再附一道例题

CF739E. Gosha is hunting

题解在这里

wqs二分的更多相关文章

  1. CF739E Gosha is hunting DP+wqs二分

    我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...

  2. 关于WQS二分算法以及其一个细节证明

    应用分析 它的作用就是题目给了一个选物品的限制条件,要求刚好选$m$个,让你最大化(最小化)权值, 然后其特点就是当选的物品越多的时候权值越大(越小). 算法分析 我们先不考虑物品限制条件, 假定我们 ...

  3. [总结] wqs二分学习笔记

    论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\ ...

  4. BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)

    假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...

  5. [学习笔记]凸优化/WQS二分/带权二分

    从一个题带入:[八省联考2018]林克卡特树lct——WQS二分 比较详细的: 题解 P4383 [[八省联考2018]林克卡特树lct] 简单总结和补充: 条件 凸函数,限制 方法: 二分斜率,找切 ...

  6. [八省联考2018]林克卡特树lct——WQS二分

    [八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...

  7. CF739E Gosha is hunting 【WQS二分 + 期望】

    题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i] ...

  8. 「学习笔记」wqs二分/dp凸优化

    [学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...

  9. 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)

    题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...

随机推荐

  1. PHP八大设计模式

    设计模式 单例模式解决的是如何在整个项目中创建唯一对象实例的问题,工厂模式解决的是如何不通过new建立实例对象的方法. 单例模式 $_instance必须声明为静态的私有变量 构造函数和析构函数必须声 ...

  2. Python实例----------每日一贴

    def function_tips(): '''功能:每天输出一条励志文字 ''' import datetime # 导入日期时间类 # 定义一个列表 mot = ["今天星期一:\n人生 ...

  3. 总结安装webpack过程中遇到的错误及解决方案

    1.安装不成功的报错: 解决方案:清除缓存 2.打包不成功: 解决方案:填写打包路径时的“__dirname”有两个下划线 3.打包报错: 解决方案:正确填写路径为“./style.css”

  4. Android为TV端助力 EventBus出现has no public methods called onEvent的问题

    Caused by: de.greenrobot.event.EventBusException: Subscriber class com.hhzt.iptv.lvb_w.socket.MyMsgS ...

  5. Java基础系列--07_Object类的学习及源码分析

    Object: 超类 (1)Object是类层次结构的顶层类,是所有类的根类,超类.   所有的类都直接或者间接的继承自Object类.   所有对象(包括数组)都实现这个类的方法 (2)Object ...

  6. eclipse java formater 配置详解

    comment.insert_new_line_before_root_tags(insert/do_not_insert):在Javadoc根标记块前插入空行,默认为insert: insert_s ...

  7. maven编译开源项目报enforce错解决

    刚下载一个开源项目源码,用maven编译发现报错: [ERROR] Failed to execute goal org.apache.maven.plugins:maven-enforcer-plu ...

  8. Migrating Brokers in a Cluster

    Brokers can be moved to a new host in a Kafka cluster. This might be needed in the case of catastrop ...

  9. RecyclerView的Item的单击事件

    RecyclerView 的每个Item的点击事件并没有像ListView一样封装在组件中,需要Item的单击事件时就需要自己去实现,在Adapter中为RecyclerView添加单击事件参考如下: ...

  10. 云计算openstack共享组件(1)——时间同步服务ntp

    一.标准时间讲解 地球分为东西十二个区域,共计 24 个时区 格林威治作为全球标准时间即 (GMT 时间 ),东时区以格林威治时区进行加,而西时区则为减. 地球的轨道并非正圆,在加上自转速度逐年递减, ...