titanic数据集是个著名的数据集.kaggle上的titanic乘客生还率预测比赛是一个很好的入门机器学习的比赛.

数据集下载可以去https://www.kaggle.com/c/titanic/data.

本身写这个系列笔记是作为自己机器学习的记录,也为了加深自己对机器学习相关知识的理解.但是写了前两篇seaborn的笔记以后,感觉缺乏实际的比赛数据的例子,写起来比较枯燥,读的人看的可能也很枯燥,浏览量也寥寥.读的人可能看完了会有一种,"哦,这样啊,原来如此,懂了懂了",然鹅,一拿到真实的数据,还是一筹莫展,无从下手.

所以,今天就拿真实的数据来学习一下seaborn要怎么用.怎么在开始正式的机器学习算法之前探索我们的数据关系.

titanic数据集给出了891行,12列已经标记的数据.即我们已知train.csv中891名乘客是否生还.我们需要预测test.csv中的418名乘客是否能够生还.

首先看一眼我们的数据.

Variable Definition Key
survival Survival 0 = No, 1 = Yes
pclass Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd
sex Sex  
Age Age in years  
sibsp # of siblings / spouses aboard the Titanic  
parch # of parents / children aboard the Titanic  
ticket Ticket number  
fare Passenger fare  
cabin Cabin number  
embarked Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

意思是一名名字叫harris的22岁男性乘客,乘坐三等仓,船上有1个兄弟姐妹/配偶,0个父母/子女,在Southampton上船,票价7.25,在此次灾难中没有生还.

拿到数据,我有几个简单的设想

  1. 票的级别越高,越容易获救 其实就是有钱有地位的容易获救
  2. 票价越高越容易获救  同上
  3. 兄弟姐妹或者父母子女多,容易获救  因为可以互相帮助
  4. 女性更容易获救
  5. 孩子更容易获救

好了,下面用seaborn来画画图,观察一下我们的数据,看看我拿到数据后第一想法对不对.

我主要用catplot 和 displot来绘图.

先来看看Pclass和Survived的关系.

catplot顾名思义,主要用来绘制分类数据(Categorical values).kind表示绘制什么样的图,bar,box,violin等等.

sns.catplot(x="Pclass",y="Survived", kind="bar", data=titanic_train);

以此为例,我们的数据集中Pclass的取值共有3种,1,2,3,分别表示一等票,二等票,三等票.

当我们选择bar图时,y轴绘制出的是一个矩形,表示的是"Survived"这个数据的均值.(默认是均值,也可以调整为中位值).由于我们的Survived取值只有0(遇难了),1(获救了).那么均值等于获救比例.

很明显1等票的生还率更高.

再来看下票价和生还之间的关系.

票价的数据各种各样,不像Pclass就3种.

sns.catplot(y="Fare",x="Survived", kind="bar", data=titanic_train);

很明显,获救的人平均票价更高.

fare的值很多,我们想看看具体有哪些,大致的分布,可以用box.

sns.catplot(y="Fare",x="Survived", kind="box", data=titanic_train);

box绘图,会绘制出一个箱体,并标注出数据的25%(Q1),50%(Q2),75%(Q3)及outlier处的位置.

其中怎么判断哪些点是属于异常值呢?根据IQR=Q3-Q1.   距离Q1或Q3的距离超过1.5IQR的就算是异常.

比如,下图的Q1=12 Q2=26 Q3=57.那么IQR=Q3-Q1=45.  超过Q3+1.5IQR=57+67.5=124.5的就会被算成异常点.会用黑色的小菱形绘制出来.

如果我们想要绘制出概率估计图.则可以用displot,或者kdeplot.这个在之前的文章里介绍过了.

sns.kdeplot(titanic_train["Fare"][(titanic_train["Survived"] == 1) & (titanic_train["Fare"].notnull())], shade=1, color='red')
sns.kdeplot(titanic_train["Fare"][(titanic_train["Survived"] == 0) & (titanic_train["Fare"].notnull())], shade=1, color='green');

可以得到同样的结论,票价高的,获救概率更高一点.

注意:知识点来了

不止这一点,我们还看到,fare的分布并不是正态分布的,分布的极其不规则,也就是所谓的数据偏移,可以看到高收入的分布概率是很低的,但是高收入的样本分布确并不少,即假如我们把100认为高票价,一个人的票价是100以上的概率是很低的,但是在100-500之间分布的确很多,各种各样的都有.那机器学习算法在处理这个数据的时候就要注意了,要对数据做处理,可以用log函数做转换,或者你把0-20,20-50,50-100,100+的分别归类为1(很低),2(一般),3(较贵),4(很贵),用这种思想也可以.

实际上,对这个数据的处理,让我最终的预测率直接提高了2个百分点.

titanic_train["Fare"].skew()

可以通过这个skew()来检测数据的偏移度.如果数据偏移度比较高的话,如果skew()>0.75,一般需要对数据做分布变换,可以使用log变换.

这个skew()>0.75中的0.75怎么来的,我不太清楚,可能是一种经验值.我们的这个例子中skew()值已经接近5了.

下面来验证我们的猜想3,家人越多越容易得救

sns.catplot(x="SibSp",y="Survived", kind="bar", data=titanic_train);
sns.catplot(x="Parch",y="Survived", kind="bar", data=titanic_train);

可以看到和我们的猜想并不一致,当有一个兄弟姐妹的时候,获救概率大概有0.55.而有4个兄弟姐妹的时候,获救概率反而只有0.15了.

在父母子女上,也是类似的,当父母子女达到5个的时候,获救概率反而低了.

titanic_train["family"] = titanic_train["SibSp"] + titanic_train["Parch"] + 1

sns.catplot(x="family",y="Survived", kind="bar", data=titanic_train);

我们创建一个新特征,家庭成员数,可以看到,当家庭人数比较少的时候,生还概率大.当家庭过于庞大,生还概率更低了.

猜想,是不是人少的时候,可以互相帮助,人多了,寻找家人会更困难,导致本可以获救的最终因为寻找家人也没活下来?

接下来看我们的猜想4,女人更容易获救

sns.catplot(x="Sex",y="Survived", kind="bar", data=titanic_train);

结论显而易见,女性获救概率高得多,lady first。

再来探索一下年龄与获救的关系,验证我们的猜想5.

sns.catplot(y="Age",x="Survived", kind="bar", data=titanic_train);

生还乘客的平均年龄是低了一点,但是两者区别不大,也都在正常区间,似乎看不出来什么.

我们来看看概率估计.

sns.kdeplot(titanic_train["Age"][(titanic_train["Survived"] == 1) & (titanic_train["Age"].notnull())], shade=1, color='red')
sns.kdeplot(titanic_train["Age"][(titanic_train["Survived"] == 0) & (titanic_train["Age"].notnull())], shade=1, color='green');

这个图就很明显了,在age很小的时候,红线(获救)明显有个波峰.说明在这个年级段,获救概率更高.   在age很大的时候(60岁以上),

绿线在红线之上,说明老人更可能遇难.

至此我们的5个猜想基本被验证,除了猜想3.  说明直觉还是比较准的嘛.

现在还剩下Name,Ticket,Cabin,Embarked这4个特征与Survived的关系没有验证.

其中Name,Ticket,Cabin都是不规则的字符串,需要做更多的特征工程,找到其中的规律以后,才好观察数据之间的关系.Embarked的取值只有S,C,Q3种.我们来看下Embarked与Survived的关系.

老套路:

sns.catplot(y="Survived", x = "Embarked",data = titanic_train, kind="bar")

C = Cherbourg, Q = Queenstown, S = Southampton

说实话,这个真的非常出乎我的意料.我原以为,是否生还和上船港口没有关系,三者的生还概率应该是基本一样才对.

然后我就开始胡思乱想了,总不能Cherbourg登船的人命好吧,越想越没道理.或者说Cherbourg登船的人都坐在船的某个位置,受到冰山撞击比较小?又或者只是因为样本数量太少了,是个偶然的巧合?

然后我想到是不是这个港口登船的都是有钱人?

sns.catplot(y="Fare", x = "Embarked",data = titanic_train, kind="bar")

sns.catplot(x="Pclass", hue="Embarked",  data=titanic_train,kind="count")

这么一看,还真是.所以Embarked=C的乘客生还概率高不是什么偶然.

所以这就引发了一个问题,数据之间其实有关联的,比如Embarked和Fare就有一定的相关性.我们可以用heatmap来探索各个特征数据之间的相关性.

sns.heatmap(titanic_train.corr(),annot=True,fmt ='.2f')

titanic_train.corr()计算出来的是各个特征的皮尔逊相关系数.皮尔逊相关系数。 wiki上解释一大堆,说实在的里面很多数学和统计学上的公式我没看懂.其实我们也不需要搞的特别清楚这些数学公式.   说白了,皮尔逊相关系数就是求两个向量之间的距离或者说夹角,越小越相关.(这个说法不严谨,但是原理上这么理解是没问题的).皮尔逊相关系数求出来在-1到1之间.

因为是求向量之间距离,所以展示的只有特征值是数字型的特征,Embarked特征的值是字符,所以没展示.你可以把字符映射成数字,比如S-->1,C-->2,Q-->3,再计算皮尔逊相关系数.当然这样做是有问题的.因为,S,C,Q本来不存在大小关系,这么映射以后存在了大小关系.这里涉及到一个one-hot编码问题.有兴趣的自己搜索一下,这篇就先不讲了.

ok,以上就是本篇文章使用seaborn探索titanic数据的内容,更多有趣有用的关于数据预处理可视化,关于seaborn使用等着大家去学习探索.希望这篇文章对大家有帮助和启发.

使用seaborn探索泰坦尼克号上乘客能否获救的更多相关文章

  1. 你能在泰坦尼克号上活下来吗?Kaggle的经典挑战

    Kaggle Kaggle是一个数据科学家共享数据.交换思想和比赛的平台.人们通常认为Kaggle不适合初学者,或者它学习路线较为坎坷. 没有错.它们确实给那些像你我一样刚刚起步的人带来了挑战.作为一 ...

  2. deque、queue和stack深度探索(上)

    deque是可双端扩展的双端队列,蓝色部分就是它的迭代器类,拥有四个指针,第一个cur用来指向当前元素,first指向当前buffer头部,last指向当前buffer尾部,node指向map自己当前 ...

  3. 机器学习案例学习【每周一例】之 Titanic: Machine Learning from Disaster

     下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模 ...

  4. Kaggle泰坦尼克数据科学解决方案

    原文地址如下: https://www.kaggle.com/startupsci/titanic-data-science-solutions --------------------------- ...

  5. TensorFlow从1到2(十四)评估器的使用和泰坦尼克号乘客分析

    三种开发模式 使用TensorFlow 2.0完成机器学习一般有三种方式: 使用底层逻辑 这种方式使用Python函数自定义学习模型,把数学公式转化为可执行的程序逻辑.接着在训练循环中,通过tf.Gr ...

  6. Kaggle案例泰坦尼克号问题

    泰坦里克号预测生还人口问题 泰坦尼克号问题背景 - 就是那个大家都熟悉的『Jack and Rose』的故事,豪华游艇倒了,大家都惊恐逃生,可是救生艇#### 的数量有限,无法人人都有,副船长发话了l ...

  7. 利用python进行泰坦尼克生存预测——数据探索分析

    最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每 ...

  8. 利用python分析泰坦尼克号数据集

    1 引言 刚接触python与大数据不久,这个是学长给出的练习题目.知识积累太少,学习用了不少的时间.尽量详细的写,希望对各位的学习有所帮助. 2 背景 2.1 Kaggle 本次数据集来自于Kagg ...

  9. Kaggle 入门题-泰坦尼克号灾难存活预测

    这个题目的背景概况来讲就是基于泰坦尼克号这个事件,然后大量的人员不幸淹没在这个海难中,也有少部分人员在这次事件之中存活,然后这个问题提供了一些人员的信息如姓名.年龄.性别.票价,所在客舱等等一些信息, ...

随机推荐

  1. python获取当前时间

    import time time = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime()) print("当前时间:",time) ...

  2. Eureka的功能特性及相关配置

    1.服务提供者1.1服务注册服务提供者启动时,会通过rest请求的方式将自己注册到Eureka Server上,同时带上了自身服务的一些元数据信息.Eureka Server接收到请求后,将元数据信息 ...

  3. Vue之生命周期函数和钩子函数详解

    在学习vue几天后,感觉现在还停留在初级阶段,虽然知道怎么和后端做数据交互,但是对对vue的生命周期不甚了解.只知道简单的使用,而不知道为什么,这对后面的踩坑是相当不利的.因为我们有时候会在几个钩子函 ...

  4. React 虚拟 DOM 的差异检测机制

    React 使用虚拟 DOM 将计算好之后的更新发送到真实的 DOM 树上,减少了频繁操作真实 DOM 的时间消耗,但将成本转移到了 JavaScript 中,因为要计算新旧 DOM 树的差异嘛.所以 ...

  5. .net core redis 驱动推荐,为什么不使用 StackExchange.Redis

    前言 本人从事 .netcore 转型已两年有余,对 .net core 颇有好感,这一切得益于优秀的语法.框架设计. 2006年开始使用 .net 2.0,从 asp.net 到 winform 到 ...

  6. 从零单排学Redis【铂金二】

    前言 只有光头才能变强 好的,今天我们要上[铂金二]了,如果还没有上铂金的,赶紧先去蹭蹭经验再回来(不然不带你上分了): 从零单排学Redis[青铜] 从零单排学Redis[白银] 从零单排学Redi ...

  7. 服务端预渲染之Nuxt(爬坑篇)

    Nuxt是解决SEO的比较常用的解决方案,随着Nuxt也有很多坑,每当突破一个小技术点的时候,都有很大的成就感,在这段时间里着实让我痛并快乐着.在这里根据个人学习情况,所踩过的坑做了一个汇总和总结. ...

  8. C#净化版WebApi框架

    前言 我们都知道WebApi是依赖于Asp.Net MVC的HttpRouteCollection进行路由 . 但WebApi和MVC之间是没有依赖关系的, WebApi的基类ApiControlle ...

  9. asp.net core 系列之webapi集成Dapper的简单操作教程

    Dapper也是是一种ORM框架 这里记录下,使用ASP.NET 集成 Dapper 的过程,方便自己查看 至于Dapper的特性以及操作可以参考Dapper官方文档 1.创建数据库相关 在Sql S ...

  10. 第9章 设备授权端点(Device Authorization Endpoint) - IdentityModel 中文文档(v1.0.0)

    OAuth 2.0设备流设备授权的客户端库是作为HttpClient扩展方法提供的. 以下代码发送设备授权请求: var client = new HttpClient(); var response ...