BZOJ_1975_[Sdoi2010]魔法猪学院_A*

Description

iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练。经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的;元素与元素之间可以互相转换;能量守恒……。 能量守恒……iPig 今天就在进行一个麻烦的测验。iPig 在之前的学习中已经知道了很多种元素,并学会了可以转化这些元素的魔法,每种魔法需要消耗 iPig 一定的能量。作为 PKU 的顶尖学猪,让 iPig 用最少的能量完成从一种元素转换到另一种元素……等等,iPig 的魔法导猪可没这么笨!这一次,他给 iPig 带来了很多 1 号元素的样本,要求 iPig 使用学习过的魔法将它们一个个转化为 N 号元素,为了增加难度,要求每份样本的转换过程都不相同。这个看似困难的任务实际上对 iPig 并没有挑战性,因为,他有坚实的后盾……现在的你呀! 注意,两个元素之间的转化可能有多种魔法,转化是单向的。转化的过程中,可以转化到一个元素(包括开始元素)多次,但是一但转化到目标元素,则一份样本的转化过程结束。iPig 的总能量是有限的,所以最多能够转换的样本数一定是一个有限数。具体请参看样例。

Input

第一行三个数 N、M、E 表示iPig知道的元素个数(元素从 1 到 N 编号)、iPig已经学会的魔法个数和iPig的总能量。 后跟 M 行每行三个数 si、ti、ei 表示 iPig 知道一种魔法,消耗 ei 的能量将元素 si 变换到元素 ti 。

Output

一行一个数,表示最多可以完成的方式数。输入数据保证至少可以完成一种方式。

Sample Input

4 6 14.9
1 2 1.5
2 1 1.5
1 3 3
2 3 1.5
3 4 1.5
1 4 1.5

Sample Output

3


题意很明确,问最多能跑几次,其实就是K短路,每次判断长度和生育能量的大小即可。

K短路这里使用A*(可持久化可并堆做法挖坑代填)

估价函数设置为当前走过的距离+最短到终点的距离。

最短到终点的距离用dij预处理出来。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
#include <ext/pb_ds/priority_queue.hpp>
using namespace std;
using namespace __gnu_pbds;
inline int rd() {
register int x=0;
register char s=getchar();
while(s<'0'||s>'9') s=getchar();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=getchar();
return x;
}
typedef double f2;
#define N 5050
#define M 200050
int head[N],to[M],nxt[M],cnt,n,m,xx[M],yy[M],vis[N],tot[N],ans;
f2 val[M],zz[M],dis[N],lft;
__attribute__((optimize("-O2")))struct node {
f2 v;
int x;
node() {}
node(f2 v_,int x_) :
v(v_),x(x_) {}
inline bool operator < (const node &u) const {
return v+dis[x]>u.v+dis[u.x];
}
};
__gnu_pbds::priority_queue<pair<f2,int> >q1;
__gnu_pbds::priority_queue<node>q2;
__attribute__((optimize("-O2")))inline void add(int u,int v,f2 w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
__attribute__((optimize("-O2")))void dij() {
memset(dis,0x7f,sizeof(dis));
dis[n]=0; q1.push(make_pair(0,n));
while(!q1.empty()) {
int x=q1.top().second,i; q1.pop();
if(vis[x]) continue;
vis[x]=1;
for(i=head[x];i;i=nxt[i]) {
if(dis[to[i]]>dis[x]+val[i]) {
dis[to[i]]=dis[x]+val[i];
q1.push(make_pair(-dis[to[i]],to[i]));
}
}
}
}
__attribute__((optimize("-O2")))void _A_stAr_SapPh1r3_() {
f2 inf=lft/dis[1];
q2.push(node(0,1));
while(!q2.empty()) {
node t=q2.top(); q2.pop();
int x=t.x;
f2 v=t.v;
// printf("%f\n",lft);
int i;
if(x==n) {
if(lft>=v) {
lft-=v; ans++;
}else {
printf("%d\n",ans); exit(0);
}
}
for(i=head[x];i;i=nxt[i]) {
q2.push(node(v+val[i],to[i]));
}
}
}
__attribute__((optimize("-O2")))int main() {
n=rd(); m=rd(); scanf("%lf",&lft);
int i;
for(i=1;i<=m;i++) {
xx[i]=rd(); yy[i]=rd(); scanf("%lf",&zz[i]);
add(yy[i],xx[i],zz[i]);
}
dij();
//lft/=dis[1];
memset(head,0,sizeof(head)); cnt=0;
for(i=1;i<=m;i++) {
add(xx[i],yy[i],zz[i]);
}
_A_stAr_SapPh1r3_();
printf("%d\n",ans);
}

BZOJ_1975_[Sdoi2010]魔法猪学院_A*的更多相关文章

  1. Bzoj 1975: [Sdoi2010]魔法猪学院 dijkstra,堆,A*,K短路

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1357  Solved: 446[Submit][Statu ...

  2. bzoj 1975: [Sdoi2010]魔法猪学院 [k短路]

    1975: [Sdoi2010]魔法猪学院 裸题... 被double坑死了 #include <iostream> #include <cstdio> #include &l ...

  3. K短路 (A*算法) [Usaco2008 Mar]牛跑步&[Sdoi2010]魔法猪学院

    A*属于搜索的一种,启发式搜索,即:每次搜索时加一个估价函数 这个算法可以用来解决K短路问题,常用的估价函数是:已经走过的距离+期望上最短的距离 通常和Dijkstra一起解决K短路 BZOJ1598 ...

  4. bzoj 1975 [Sdoi2010]魔法猪学院

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1758  Solved: 557[Submit][Statu ...

  5. P2483 [SDOI2010]魔法猪学院

    P2483 [SDOI2010]魔法猪学院 摘要 --> 题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世 ...

  6. [BZOJ1975][SDOI2010]魔法猪学院(k短路,A*)

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2748  Solved: 883[Submit][Statu ...

  7. 【BZOJ1975】[Sdoi2010]魔法猪学院 A*

    [BZOJ1975][Sdoi2010]魔法猪学院 Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪 ...

  8. bzoj1975: [Sdoi2010]魔法猪学院【k短路&A*算法】

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2446  Solved: 770[Submit][Statu ...

  9. [SDOI2010]魔法猪学院(A*,最短路)

    [SDOI2010]魔法猪学院(luogu) Description 题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig ...

随机推荐

  1. 【深度学习】目标检测算法总结(R-CNN、Fast R-CNN、Faster R-CNN、FPN、YOLO、SSD、RetinaNet)

    目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括F ...

  2. oracle查询表索引

    转载 http://blog.sina.com.cn/s/blog_5376c7190101hvvb.html 如下: select * from user_indexes where table_n ...

  3. JVM-GC工作原理

     配置Garbage Collection 2012-09-17 14:53:18 分类: Java   上面这幅图是我从网络上摘到的,它展现了在一个的理想系统的模型下GC对系统的影响.图的最顶上红色 ...

  4. windows环境下zookeeper安装和使用

    一.简介        zooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一 ...

  5. Windows 2003 Server 标准版启动问题解决(资源转贴)

    维护的系统之一是部署在windows2003 Server标准版的服务器上,可能是由于某个应用问题,导致远程重启失败,害得我在机房呆了一早晨,可算是够折腾的.最后按照官方文档解决,刚放文档地址是:ht ...

  6. es6(五):class关键字(extends,super,static)

    ES5中,生成对象通过构造函数: function A(name,age){ this.name=name; this.age=age } // 在A的prototype属性上定义一个test方法,即 ...

  7. FPGA中的除法运算及初识AXI总线

    FPGA中的硬件逻辑与软件程序的区别,相信大家在做除法运算时会有深入体会.硬件逻辑实现的除法运算会占用较多的资源,电路结构复杂,且通常无法在一个时钟周期内完成.因此FPGA实现除法运算并不是一个&qu ...

  8. 进阶-Redis 知识梳理

    redis介绍 1.什么是NoSQL NoSQL(统称),泛指非关系型的数据库,NoSQL即Not-Only SQL,它可以作为关系型数据库的良好补充. 2.NoSQL数据库的四大分类如下: 键值(K ...

  9. .NET Core使用微软官方类库实现汉字转拼音

    一.NuGet包 拼音:Install-Package SimplifiedChinesePinYinConversion 简体-繁体互转:Install-Package TraditionalChi ...

  10. ubuntu18.04安装搜狗拼音

    1.下载好搜狗安装包http://pinyin.sogou.com/linux/ ,注意位数! 2.打开终端安装依赖    sudo apt install libfcitx-qt0 3.提取下载好的 ...