【BZOJ 2744】【HEOI2012】朋友圈
题目链接:
题解:
对于A国,我们发现,最大团一定不大于2。对于B国,发现同奇偶性点之间都有边,不同奇偶性之间可能有边,也就是说对于B国是一个二分图最大团,也就是求B国补图的二分图最大独立集。然后,我们枚举使用A国的人员,将其与B国连接的点做一个补图,跑跑匈牙利即可。
【注】大视野上测试点和题面不一样啊!MMP没有t读入,只有一组数据,日哦!!
代码:
#include <cstdio>
#include <iostream>
#include <cstring> using namespace std; inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} const int N=3e3+; int A,B,M; struct edges{
int v;edges *last;
}edge[N*N],*head[N<<];int cnt; inline void push(int u,int v){
edge[++cnt]=(edges){v,head[u]};head[u]=edge+cnt;
} struct Country{
int sgl[N<<],cpl[N<<];
int cnt_sgl,cnt_cpl;
int val[N<<],re[N<<];
inline void add(int x,int pos){
if(x&){
sgl[++cnt_sgl]=pos;
val[pos]=x;re[pos]=cnt_sgl;
}else{
cpl[++cnt_cpl]=pos;
val[pos]=x;re[pos]=cnt_cpl;
}
}
inline void clear(){
cnt_sgl=cnt_cpl=;
}
}a,b; int f[N<<];bool vis[N<<]; inline bool find(int x){ for(edges *i=head[x];i;i=i->last){
if(!vis[i->v]){
vis[i->v]=true;
if(f[i->v]==-||find(f[i->v])){
f[i->v]=x;
return true;
}
}
}
return false;
} int v[][N<<],size[N<<],tt[N<<]; inline void build(){
for(int i=;i<=b.cnt_sgl;i++)
if(tt[b.sgl[i]]==){
for(int j=;j<=b.cnt_cpl;j++)
if(tt[b.cpl[j]]==){
int x=b.val[b.sgl[i]]|b.val[b.cpl[j]];
int t();
while(x) t+=x&,x>>=;
if((~t)&)
push(i,j);
}
}
} inline int solve(){
memset(f,-,sizeof(f));
int ret=;
for(int i=;i<=B;i++)
ret+=tt[i]==;
for(int i=;i<=b.cnt_sgl;i++){
if(tt[b.sgl[i]]==){
memset(vis,,sizeof(vis));
if(find(i))
ret--;
}
}
return ret;
} inline void clear(){
memset(head,,sizeof(head));
cnt=;
} int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
clear();
a.clear();b.clear();
memset(v,,sizeof(v));
memset(size,,sizeof(size));
A=read(),B=read(),M=read();
for(int i=;i<=A;i++) a.add(read(),i);
for(int i=;i<=B;i++) b.add(read(),i);
for(int i=,u,vv;i<=M;i++){
u=read(),vv=read();
v[u][++size[u]]=vv;
}
for(int i=;i<=B;i++)
tt[i]=;
build();
int ans=(a.cnt_sgl>)+(a.cnt_cpl>);
ans=max(ans,solve());
memset(tt,,sizeof(tt));
for(int i=;i<=a.cnt_sgl;i++){
for(int j=;j<=size[a.sgl[i]];j++)
tt[v[a.sgl[i]][j]]=;
clear();
build();
ans=max(ans,solve()+);
for(int j=;j<=size[a.sgl[i]];j++)
tt[v[a.sgl[i]][j]]=;
}
for(int j=;j<=a.cnt_cpl;j++){
for(int k=;k<=size[a.cpl[j]];k++)
tt[v[a.cpl[j]][k]]=;
clear();
build();
ans=max(ans,solve()+);
for(int k=;k<=size[a.cpl[j]];k++)
tt[v[a.cpl[j]][k]]=;
}
for(int i=;i<=a.cnt_sgl;i++){
for(int j=;j<=size[a.sgl[i]];j++)
tt[v[a.sgl[i]][j]]++;
for(int j=;j<=a.cnt_cpl;j++){
for(int k=;k<=size[a.cpl[j]];k++)
tt[v[a.cpl[j]][k]]++;
clear();
build();
ans=max(ans,solve()+);
for(int k=;k<=size[a.cpl[j]];k++)
tt[v[a.cpl[j]][k]]--;
}
for(int j=;j<=size[a.sgl[i]];j++)
tt[v[a.sgl[i]][j]]--;
}
printf("%d\n",ans); }
【BZOJ 2744】【HEOI2012】朋友圈的更多相关文章
- bzoj 2744: [HEOI2012]朋友圈 二分图匹配
2744: [HEOI2012]朋友圈 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 612 Solved: 174[Submit][Status] ...
- 【刷题】BZOJ 2744 [HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- bzoj 2744 [HEOI2012]朋友圈——补图!+匈牙利算法
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2744 求最大的团<==>补图(有边的变成没边.没边的变成有边)的最大独立集! A ...
- bzoj 2744: [HEOI2012]朋友圈
#include<cstdio> #include<iostream> #define M 3010 using namespace std; ],u[M*M>>] ...
- 【BZOJ 2744】 2744: [HEOI2012]朋友圈 (最大团,二分图匹配,构图)
2744: [HEOI2012]朋友圈 Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他 ...
- 【BZOJ 2744 】[HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- BZOJ2744:[HEOI2012]朋友圈(最大团,乱搞)
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- luogu P2423 [HEOI2012]朋友圈 (最大团)
在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着. 一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大数目.两个国家看成是 ...
- 【二分图】HEOI2012 朋友圈
题目内容 洛谷链接 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着. 一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大 ...
- BZOJ2744: [HEOI2012]朋友圈
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2744 最大团是一个np问题.. 对于本题,做它的逆问题,建反图做最大独立集. 对于A最多取出两 ...
随机推荐
- Asp.NetCore+Microsoft.AspNetCore.SignalR前后端分离
1.新建WebApi 2.安装Microsoft.AspNetCore.SignalR 3.新建一个集线器和消息类 using Microsoft.AspNetCore.SignalR; using ...
- WebService学习--(四)调用第三方提供的webService服务
互联网上面有很多的免费webService服务,我们可以调用这些免费的WebService服务,将一些其他网站的内容信息集成到我们的Web应用中显示,下面就以获取天气预报数据和查询国内手机号码归属地为 ...
- java程序的内存分配(一)
首 页 阅览室 馆友 我的图书馆 帐号 java程序的内存分配(一) 收藏 JAVA 文件编译执行与虚拟机(JVM)介绍 Java 虚拟机(JVM)是可运行Java代码的假想计算机.只要根据J ...
- Xamarin引用第三方包错误解决方法
http://www.cnblogs.com/ThenDog/p/7623720.html
- Spring MVC “404 Not Found”错误的解决
一般这个问题发生的原因不会出在Web.xml配置文件的Servlet URL映射部分,因为这个URL映射做JavaWeb的人经常配置不会发生错误,而且此处的这个映射自由度很大,可以有目录字符串,也可以 ...
- Web安全工具大汇聚
http://www.owasp.org/index.PHP/Phoenix/Tools http://sebug.net/paper/other/Web安全工具大汇聚.txt =========== ...
- DjangoRestFramework实践笔记
1.Restful服务的实现方式一共三种:function based view,class based view,viewset+router,这三种实现方式的封装重度依序升高,越往后越适合典型CU ...
- pc端页面打包成安卓apk
一.phoneGap PhoneGap是一个采用HTML,CSS和JavaScript的技术,创建移动跨平台移动应用程序的快速开发平台.它使开发者能够在网页中调用IOS,Android,Palm,Sy ...
- ssh运行环境搭建及测试
一.运行环境 1.Spring环境 Spring是一站式开发框架,在SSH中主要有以下作用,就像一个大管家: 控制反转(Inversion of Control):类不再自己进行类创建,而是交给Spr ...
- Ocelot中文文档-管理
Ocelot支持在运行时通过一个认证的Http API修改配置.有两种方式对其验证, 使用Ocelot的内置IdentityServer(仅用于向管理API验证请求)或将管理API验证挂接到您自己的I ...