数据结构之并查集Union-Find Sets
1、 概述
并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。
2、 基本操作
并查集是一种非常简单的数据结构,它主要涉及两个基本操作,分别为:
A. 合并两个不相交集合
B. 判断两个元素是否属于同一个集合
(1) 合并两个不相交集合(Union(x,y))
合并操作很简单:先设置一个数组Father[x],表示x的“父亲”的编号。那么,合并两个不相交集合的方法就是,找到其中一个集合最父亲的父亲(也就是最久远的祖先),将另外一个集合的最久远的祖先的父亲指向它。

上图为两个不相交集合,b图为合并后Father(b):=Father(g)
(2) 判断两个元素是否属于同一集合(Find_Set(x))
本操作可转换为寻找两个元素的最久远祖先是否相同。可以采用递归实现。
3、 优化
(1) Find_Set(x)时,路径压缩
寻找祖先时,我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度。为了避免这种情况,我们需对路径进行压缩,即当我们经过”递推”找到祖先节点后,”回溯”的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示。可见,路径压缩方便了以后的查找。

(2) Union(x,y)时,按秩合并
即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。
4、 编程实现
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
intfather[MAX]; /* father[x]表示x的父节点*/intrank[MAX]; /*rank[x]表示x的秩*/ voidMake_Set(intx){father[x] = x; //根据实际情况指定的父节点可变化rank[x] = 0; //根据实际情况初始化秩也有所变化}/* 查找x元素所在的集合,回溯时压缩路径*/intFind_Set(intx){if(x != father[x]){father[x] = Find_Set(father[x]); //这个回溯时的压缩路径是精华}returnfather[x];}/*按秩合并x,y所在的集合下面的那个if else结构不是绝对的,具体根据情况变化但是,宗旨是不变的即,按秩合并,实时更新秩。*/voidUnion(intx, inty){x = Find_Set(x);y = Find_Set(y);if(x == y) return;if(rank[x] > rank[y]){father[y] = x;}else{if(rank[x] == rank[y]){rank[y]++;}father[x] = y;}} |
5、 复杂度分析
空间复杂度为O(N),建立一个集合的时间复杂度为O(1),N次合并M查找的时间复杂度为O(M Alpha(N)),这里Alpha是Ackerman函数的某个反函数,在很大的范围内(人类目前观测到的宇宙范围估算有10的80次方个原子,这小于前面所说的范围)这个函数的值可以看成是不大于4的,所以并查集的操作可以看作是线性的。具体复杂度分析过程见参考资料(3)。
6、 应用
并查集常作为另一种复杂的数据结构或者算法的存储结构。常见的应用有:求无向图的连通分量个数,最近公共祖先(LCA),带限制的作业排序,实现Kruskar算法求最小生成树等。
7、 参考资料
(1) 并查集:http://www.nocow.cn/index.php/%E5%B9%B6%E6%9F%A5%E9%9B%86
(2) 博文《并查集详解》:http://www.cnblogs.com/cherish_yimi/
(3) Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Chapter 21: Data structures for Disjoint Sets, pp. 498–524.
————————————————————————————————————-
更多关于数据结构和算法的介绍,请查看:数据结构与算法汇总
————————————————————————————————————-
原创文章,转载请注明: 转载自董的博客
数据结构之并查集Union-Find Sets的更多相关文章
- 笔试算法题(38):并查集(Union-Find Sets)
议题:并查集(Union-Find Sets) 分析: 一种树型数据结构,用于处理不相交集合(Disjoint Sets)的合并以及查询:一开始让所有元素独立成树,也就是只有根节点的树:然后根据需要将 ...
- 数据结构09—— 并查集(Union-Find)
一.关于并查集 并查集(Union-Find)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.并查集(Union-Find)从名字可以看出,主要它涉及两种 ...
- 数据结构 之 并查集(Disjoint Set)
一.并查集的概念: 首先,为了引出并查集,先介绍几个概念: 1.等价关系(Equivalent Relation) 自反性.对称性.传递性. 如果a和b存在等价关系,记 ...
- 并查集(Union/Find)模板及详解
概念: 并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的Kruskal 算法和求最近公共祖先等. 操作: 并查集的基本操作有两个 ...
- 【基本数据结构】并查集-C++
并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题近几年来反复出 ...
- 数据结构(并查集||树链剖分):HEOI 2016 tree
[注意事项] 为了体现增强版,题目限制和数据范围有所增强: 时间限制:1.5s 内存限制:128MB 对于15% 的数据,1<=N,Q<=1000. 对于35% 的数据,1<=N,Q ...
- POJ 1611 The Suspects 并查集 Union Find
本题也是个标准的并查集题解. 操作完并查集之后,就是要找和0节点在同一个集合的元素有多少. 注意这个操作,须要先找到0的父母节点.然后查找有多少个节点的额父母节点和0的父母节点同样. 这个时候须要对每 ...
- 【算法与数据结构】并查集 Disjoint Set
并查集(Disjoint Set)用来判断已有的数据是否构成环. 在构造图的最小生成树(Minimum Spanning Tree)时,如果采用 Kruskal 算法,每次添加最短路径前,需要先用并查 ...
- Java 并查集Union Find
对于一组数据,主要支持两种动作: union isConnected public interface UF { int getSize(); boolean isConnected(int p,in ...
随机推荐
- 回收 PV - 每天5分钟玩转 Docker 容器技术(152)
当 PV 不再需要时,可通过删除 PVC 回收. 当 PVC mypvc1 被删除后,我们发现 Kubernetes 启动了一个新 Pod recycler-for-mypv1,这个 Pod 的作用就 ...
- OAuth2.0学习(1-13)oauth2.0 的概念:资源、权限(角色)和scope
mkk 关于资源的解释 : https://andaily.com/blog/?cat=19 resource用于将系统提供的各类资源进行分组管理, 每一个resource对应一个resource-i ...
- nginx配置反向代理详细教程(windows版)
内容属于原创,如果需要转载,还请注明地址:http://www.cnblogs.com/j-star/p/8785334.html Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(I ...
- 关于CheckStyle在eclipse出现的问题
今天在公司换了一个CheckStyle xml文件.那么我尝试直接import进去新的文件. 在我Check code的时候就爆了下面的错误 o: Failed during checkstyle c ...
- OptionMenu选项菜单
#选项菜单 from tkinter import * root = Tk() variable=StringVar() variable.set('one') w = OptionMenu(root ...
- SQL Server 2008 R2 安装注意事项
上个星期自己第一次安装SQL Server 2008 R2,安装失败几次,结果用了将近1天的时间安装,最后成功了. 心得:1.安装SQL Server 2008 R2时,最好在第一次就安装成功.在百度 ...
- 百度API-------热力图
<!DOCTYPE html><html><head> <meta http-equiv="Content-Type" content=& ...
- mysql \N 的疑惑
\N 在mysql查询为NULL 好像是可以代替成一个字符串,并与后面的单词隔绝,我的理解为下图这样 还是不懂为啥会这样.
- [NOI 2015]软件包管理器
Description Linux用户和OSX用户一定对软件包管理器不会陌生. 通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖 ...
- 模板 AC自动机
题目描述 有$N$ 个由小写字母组成的模式串以及一个文本串$T$ .每个模式串可能会在文本串中出现多次.你需要找出哪些模式串在文本串$T$ 中出现的次数最多. 输入输出格式 输入格式: 输入含多组数据 ...