Directory:

集群目录服务Directory, 代表多个Invoker, 可以看成List<Invoker>,它的值可能是动态变化的比如注册中心推送变更。集群选择调用服务时通过目录服务找到所有服务

StaticDirectory: 静态目录服务, 它的所有Invoker通过构造函数传入, 服务消费方引用服务的时候, 服务对多注册中心的引用,将Invokers集合直接传入 StaticDirectory构造器,再由Cluster伪装成一个Invoker;StaticDirectory的list方法直接返回所有invoker集合;

RegistryDirectory: 注册目录服务, 它的Invoker集合是从注册中心获取的, 它实现了NotifyListener接口实现了回调接口notify(List<Url>)

通俗的来说,就是一个缓存和更新缓存的过程

Directory目录服务的更新过程

RegistryProtocol.doRefer方法,也就是消费端在初始化的时候,这里涉及到了RegistryDirectory这个类。然后执行cluster.join(directory)方法。这些代码在上篇博客有分析过。

cluster.join其实就是将Directory中的多个Invoker伪装成一个Invoker, 对上层透明,包含集群的容错机制

private <T> Invoker<T> doRefer(Cluster cluster, Registry registry, Class<T> type, URL url) {
RegistryDirectory<T> directory = new RegistryDirectory<T>(type, url);//对多个invoker进行组装
directory.setRegistry(registry); //ZookeeperRegistry
directory.setProtocol(protocol); //protocol=Protocol$Adaptive
//url=consumer://192.168.111....
URL subscribeUrl = new URL(Constants.CONSUMER_PROTOCOL, NetUtils.getLocalHost(), 0, type.getName(), directory.getUrl().getParameters());
//会把consumer://192... 注册到注册中心
if (! Constants.ANY_VALUE.equals(url.getServiceInterface())
&& url.getParameter(Constants.REGISTER_KEY, true)) {
//zkClient.create()
registry.register(subscribeUrl.addParameters(Constants.CATEGORY_KEY, Constants.CONSUMERS_CATEGORY,
Constants.CHECK_KEY, String.valueOf(false)));
}
directory.subscribe(subscribeUrl.addParameter(Constants.CATEGORY_KEY,
Constants.PROVIDERS_CATEGORY
+ "," + Constants.CONFIGURATORS_CATEGORY
+ "," + Constants.ROUTERS_CATEGORY));
//Cluster$Adaptive
return cluster.join(directory);
}

  directory.subscribe:

订阅节点的变化,

1. 当zookeeper上指定节点发生变化以后,会通知到RegistryDirectory的notify方法

2. 将url转化为invoker对象

调用过程中invokers的使用

再调用过程中,AbstractClusterInvoker.invoke方法中:其中list(invocation) 就是获取directory中所缓存的 invoker。调用AbstrctDirectory的list方法,再转由调用RegisteryDirectory的doList,拿到成员变量methodInvokerMap里的值。

public Result invoke(final Invocation invocation) throws RpcException {

    checkWhetherDestroyed();

    LoadBalance loadbalance;

    List<Invoker<T>> invokers = list(invocation);
if (invokers != null && invokers.size() > 0) {
loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(invokers.get(0).getUrl()
.getMethodParameter(invocation.getMethodName(),Constants.LOADBALANCE_KEY, Constants.DEFAULT_LOADBALANCE));
} else {
loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(Constants.DEFAULT_LOADBALANCE);
}
RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);
return doInvoke(invocation, invokers, loadbalance);
}

负载均衡LoadBalance: 

  LoadBalance负载均衡, 负责从多个 Invokers中选出具体的一个Invoker用于本次调用,调用过程中包含了负载均衡的算法。

  在AbstractClusterInvoker.invoke中代码如下,通过名称获得指定的扩展点。RandomLoadBalance:

public Result invoke(final Invocation invocation) throws RpcException {

    checkWhetherDestroyed();

    LoadBalance loadbalance;

    List<Invoker<T>> invokers = list(invocation);
if (invokers != null && invokers.size() > 0) {//默认拓展点是随机算法@SPI(RandomLoadBalance.NAME)
loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(invokers.get(0).getUrl()
.getMethodParameter(invocation.getMethodName(),Constants.LOADBALANCE_KEY, Constants.DEFAULT_LOADBALANCE));
} else {
loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(Constants.DEFAULT_LOADBALANCE);
}
RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);
return doInvoke(invocation, invokers, loadbalance);
}

AbstractClusterInvoker.doselect

  调用LoadBalance.select方法,讲invokers按照指定算法进行负载

private Invoker<T> doselect(LoadBalance loadbalance, Invocation invocation, List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException {
if (invokers == null || invokers.size() == 0)
return null;
if (invokers.size() == 1)
return invokers.get(0);
// 如果只有两个invoker,退化成轮循
if (invokers.size() == 2 && selected != null && selected.size() > 0) {
return selected.get(0) == invokers.get(0) ? invokers.get(1) : invokers.get(0);
}
Invoker<T> invoker = loadbalance.select(invokers, getUrl(), invocation); //如果 selected中包含(优先判断) 或者 不可用&&availablecheck=true 则重试.
if( (selected != null && selected.contains(invoker))
||(!invoker.isAvailable() && getUrl()!=null && availablecheck)){
try{
Invoker<T> rinvoker = reselect(loadbalance, invocation, invokers, selected, availablecheck);
if(rinvoker != null){
invoker = rinvoker;
}else{
//看下第一次选的位置,如果不是最后,选+1位置.
int index = invokers.indexOf(invoker);
try{
//最后在避免碰撞
invoker = index <invokers.size()-1?invokers.get(index+1) :invoker;
}catch (Exception e) {
logger.warn(e.getMessage()+" may because invokers list dynamic change, ignore.",e);
}
}
}catch (Throwable t){
logger.error("clustor relselect fail reason is :"+t.getMessage() +" if can not slove ,you can set cluster.availablecheck=false in url",t);
}
}
return invoker;
}

  通过调用 AbstrctLoadBalance 的loadbalance.select(invokers, getUrl(), invocation) 转向具体的实现类,这里就是随机算法负载的 doSelect:

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
int length = invokers.size(); // 总个数
int totalWeight = 0; // 总权重
boolean sameWeight = true; // 权重是否都一样
for (int i = 0; i < length; i++) {
int weight = getWeight(invokers.get(i), invocation);
totalWeight += weight; // 累计总权重
if (sameWeight && i > 0
&& weight != getWeight(invokers.get(i - 1), invocation)) {
sameWeight = false; // 计算所有权重是否一样
}
}
if (totalWeight > 0 && ! sameWeight) {
// 如果权重不相同且权重大于0则按总权重数随机
int offset = random.nextInt(totalWeight);
// 并确定随机值落在哪个片断上
for (int i = 0; i < length; i++) {
offset -= getWeight(invokers.get(i), invocation);
if (offset < 0) {
return invokers.get(i);
}
}
}
// 如果权重相同或权重为0则均等随机
return invokers.get(random.nextInt(length));
}

 配置权重可以在配置文件中再service中可以配置weight 来确定随机的倾向

Random LoadBalance

  • 随机,按权重设置随机概率。
  • 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

RoundRobin LoadBalance

  • 轮循,按公约后的权重设置轮循比率。
  • 存在慢的提供者累积请求问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

LeastActive LoadBalance

  • 最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。
  • 使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

ConsistentHash LoadBalance

  • 一致性Hash,相同参数的请求总是发到同一提供者。
  • 当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。
  • 缺省只对第一个参数Hash,如果要修改,请配置<dubbo:parameter key="hash.arguments" value="0,1" />
  • 缺省用160份虚拟节点,如果要修改,请配置<dubbo:parameter key="hash.nodes" value="320" />

配置方法:

服务端服务级别:
<dubbo:service interface="..." loadbalance="roundrobin" />
服务端方法级别:
<dubbo:service interface="...">
<dubbo:method name="..." loadbalance="roundrobin"/>
</dubbo:service> 客户端服务级别:
<dubbo:reference interface="..." loadbalance="roundrobin" />
客户端方法级别:
<dubbo:reference interface="...">
<dubbo:method name="..." loadbalance="roundrobin"/>
</dubbo:reference>

dubbo源码之Directory与LoadBalance的更多相关文章

  1. Dubbo 源码分析 - 集群容错之 LoadBalance

    1.简介 LoadBalance 中文意思为负载均衡,它的职责是将网络请求,或者其他形式的负载"均摊"到不同的机器上.避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况.通 ...

  2. Dubbo 源码解析四 —— 负载均衡LoadBalance

    欢迎来我的 Star Followers 后期后继续更新Dubbo别的文章 Dubbo 源码分析系列之一环境搭建 Dubbo 入门之二 --- 项目结构解析 Dubbo 源码分析系列之三 -- 架构原 ...

  3. 深度解剖dubbo源码

    -----------学习dubbo源码,能给你带来什么好处?----------- 1.提升SOA的微服务架构设计能力   通过读dubbo源码是一条非常不错的通往SOA架构设计之路,毕竟SOA的服 ...

  4. Dubbo 源码分析 - 服务调用过程

    注: 本系列文章已捐赠给 Dubbo 社区,你也可以在 Dubbo 官方文档中阅读本系列文章. 1. 简介 在前面的文章中,我们分析了 Dubbo SPI.服务导出与引入.以及集群容错方面的代码.经过 ...

  5. Dubbo 源码分析 - 集群容错之 Cluster

    1.简介 为了避免单点故障,现在的应用至少会部署在两台服务器上.对于一些负载比较高的服务,会部署更多台服务器.这样,同一环境下的服务提供者数量会大于1.对于服务消费者来说,同一环境下出现了多个服务提供 ...

  6. Dubbo 源码分析 - 集群容错之 Router

    1. 简介 上一篇文章分析了集群容错的第一部分 -- 服务目录 Directory.服务目录在刷新 Invoker 列表的过程中,会通过 Router 进行服务路由.上一篇文章关于服务路由相关逻辑没有 ...

  7. dubbo源码解析五 --- 集群容错架构设计与原理分析

    欢迎来我的 Star Followers 后期后继续更新Dubbo别的文章 Dubbo 源码分析系列之一环境搭建 博客园 Dubbo 入门之二 --- 项目结构解析 博客园 Dubbo 源码分析系列之 ...

  8. 【Dubbo 源码解析】07_Dubbo 重试机制

    Dubbo 重试机制 通过前面 Dubbo 服务发现&引用 的分析,我们知道,Dubbo 的重试机制是通过 com.alibaba.dubbo.rpc.cluster.support.Fail ...

  9. 深度剖析Dubbo源码

    -----------------学习dubbo源码,能给你带来什么好处?----------- 1.提升SOA的微服务架构设计能力   通过读dubbo源码是一条非常不错的通往SOA架构设计之路,毕 ...

随机推荐

  1. NoClassDefFoundError与ClassNOtFoundException的区别

    NoClassDefFoundError是一个错误(Error),而ClassNOtFoundException是一个异常,在Java中对于错误和异常的处理是不同的,我们可以从异常中恢复程序但却不应该 ...

  2. python中requests的用法总结

    requests是一个很实用的Python HTTP客户端库,编写爬虫和测试服务器响应数据时经常会用到.可以说,Requests 完全满足如今网络的需求 本文全部来源于官方文档 http://docs ...

  3. 2017-2018-2 20165221实验二《Java面向对象程序设计》实验报告

    JAVA实验二报告 课程:Java程序设计 姓名:谭笑 学号:20165221 实验时间:2018.4.13--2018.4.15 实验2--1 实验内容 实现百分制成绩转成"优.良.中.及 ...

  4. WPF DataGrid 列显示0,-1(作废、删除)状态,1,2(支出、收入)类型,操作人(在其他表中),如何转换格式。

    操作人,左联,Join on letf //容我补充 状态,类型,类似的转换,在xmlns中引入common   xmlns:com="clr-namespace:XXX.Common&qu ...

  5. codevs 1082 线段树练习3 (线段树)

    题目: 题目描述 Description 给你N个数,有两种操作: 1:给区间[a,b]的所有数增加X 2:询问区间[a,b]的数的和. 输入描述 Input Description 第一行一个正整数 ...

  6. 【转】MySQL— 进阶

    [转]MySQL— 进阶 目录 一.视图 二.触发器 三.函数 四.存储过程 五.事务 一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需 ...

  7. X86架构

    在接触BIOS的时候,都需要对PC架构有一定的认知.目前的PC架构绝大多数都是Intel的X86架构,貌似也是因为INTEL的这个X86架构早就了目前INTEL如日中天的地位. 废话不多说,X86架构 ...

  8. NMON使用以及nmon_analyse生成分析报表

    在我们监控我们的操作系统的时候如果可以把各个硬件的监控信息生成形象化的分析报表图对于我们来说是件太好的事情了,而通过ibm的nom和nmon_analyser两者的结合完全可以实现我们的要求.首先对n ...

  9. NUMA的关闭方法【转】

    Centos 6 在/etc/grub.conf    在kernel 添加numa=off 就行了 一.检查OS是否开启NUMA # numactl --hardware available: 1 ...

  10. 创建一个yum源,rpm安装二进制包

    作者:邓聪聪 安装mariadb vi /etc/yum.repos.d/mariadb.repo [mariadb]name=mariadbbaseurl=http://mirrors.neusof ...