Problem UVA1616-Caravan Robbers

Accept: 531  Submit: 2490
Time Limit: 3000 mSec

Problem Description

Input

Input will start with a positive integer, N (3 ≤ N ≤ 500) the number of aliens. In next few lines there will be N distinct integers from 1 to N indicating the current ordering of aliens. Input is terminated by a case where N = 0. This case should not be processed. There will be not more than 100 datasets.

 Output

For each set of input print the minimum exchange operations required to fix the ordering of aliens.
 

 Sample Input

4
1 2 3 4
4
4 3 2 1
4
2 3 1 4
0
 

Sample Output

0
0
1

题解:这个题很有价值。想到倍长数列是比较自然的,但是接下来怎么办,如何快速求出将一个序列排成有序的最小交换次数,这里要用到一个结论:对于一个长度为n的元素互异的序列,通过交换实现有序的最小的交换次数是=n - n被分解成单循环的个数。具体证明见如下博客:

https://blog.csdn.net/wangxugangzy05/article/details/42454111

明白了这个,题目就变得很简单了,枚举起点,dfs找环,取最大值得出结果,这里要注意一点就是序列既可以是升序,也可以是降序,因此要倒着再枚举一遍,方法不变。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn =  + ;

 int n;
int num[maxn << ];
bool vis[maxn]; void dfs(int st, int a) {
if (vis[a]) return;
vis[a] = true;
dfs(st, num[st + a - ]);
} void dfs2(int st, int a) {
if (vis[a]) return;
vis[a] = true;
dfs2(st, num[st - a + ]);
} int main()
{
//freopen("input.txt", "r", stdin);
while (~scanf("%d", &n) && n) {
for (int i = ; i < n; i++) {
scanf("%d", &num[i]);
num[i + n] = num[i];
} int Max = ; for (int st = ; st < n; st++) {
memset(vis, false, sizeof(vis));
int cnt = ;
for (int i = st; i < st + n; i++) {
if (!vis[num[i]]) {
dfs(st, num[i]);
cnt++;
}
}
Max = Max > cnt ? Max : cnt;
} for (int st = * n - ; st >= n; st--) {
memset(vis, false, sizeof(vis));
int cnt = ;
for (int i = st; i >= st - n + ; i--) {
if (!vis[num[i]]) {
dfs2(st, num[i]);
cnt++;
}
}
Max = Max > cnt ? Max : cnt;
} printf("%d\n", n - Max);
}
return ;
}

UVA10570-Meeting with Aliens(枚举)的更多相关文章

  1. UVA-10570 Meeting with Aliens (枚举+贪心)

    题目大意:将一个1~n的环形排列变成升序的,最少需要几次操作?每次操作可以交换任意两个数字. 题目分析:枚举出1的位置.贪心策略:每次操作都保证至少一个数字交换到正确位置上. # include< ...

  2. uva10570 Meeting with Aliens

    先证明把每次i放到i位置最后次数最少:感觉,可以,用归纳法? //在序列后再加一个相同的序列,就可以模拟用各个数字开头的情况了每个位置不对的只需要换一次54123 ,5固定->41235变成12 ...

  3. UVA - 10570 Meeting with Aliens(外星人聚会)(暴力枚举)

    题意:输入1~n的一个排列(3<=n<=500),每次可以交换两个整数.用最少的交换次数把排列变成1~n的一个环状序列. 分析:正序反序皆可.枚举每一个起点,求最少交换次数,取最小值. 求 ...

  4. UVA 10570 Meeting with Aliens

    题意: N个外星人围成一桌坐下,有序的排列指N在N-1与N+1中间,现在给出一个序列,问至少交换几次可以得到有序的序列. 分析: 复制一遍输入序列,放在原序列之后.相当于环.通过枚举,可以把最小交换次 ...

  5. UVA - 10570 Meeting with Aliens (置换的循环节)

    给出一个长度不超过500的环状排列,每次操作可以交换任意两个数,求把这个排列变成有序的环状排列所需的最小操作次数. 首先把环状排列的起点固定使其成为链状排列a,枚举排好序时的状态b(一种有2n种可能) ...

  6. UVA 10570 Meeting with Aliens 外星人聚会

    题意:给你一个排列,每次可以交换两个整数(不一定要相邻),求最少交换次数把排列变成一个1~n的环形排列.(正反都算) 其实就是找环了,对于一个链状序列,最小交换次数等于不在对应位置的数字个数减去环的个 ...

  7. 【习题 8-13 UVA - 10570】Meeting with Aliens

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举1的位置在i 往右摆成一排. a[i+1]..a[n]..a[1]..a[i-1]变为有序的 ->寻找循环节,每个循环节的 ...

  8. 【uva 10570】Meeting with Aliens(算法效率--暴力+贪心)

    题意:输入1~N的一个排列,每次可以交换2个整数,问使排列变成1~N的一个环状排列所需的虽少交换次数.(3≤N≤500) 解法:(又是一道我没打代码,光想和看就花了很久时间的题~QwQ)由于n很小,可 ...

  9. UVa 10570 Meeting with Aliens (暴力)

    题意:给定一个排列,每次可交换两个数,用最少的次数把它变成一个1~n的环状排列. 析:暴力题.很容易想到,把所有的情况都算一下,然后再选出次数最少的那一个,也就是说,我们把所有的可能的形成环状排列全算 ...

  10. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

随机推荐

  1. wp rest api 授权方法步骤(使用JWT Authentication插件)

    环境:wordpress 4.7 以上,WP自带的 rest api v2 目标:使用javascript与wp rest api交互,其中编辑.新增.删除等需要Oauth认证授权 方法: 步骤一:  ...

  2. markdown 语法指南

    说明:左边是markdown的语法 右边是预览.(我这里用了黑色的背景,一般白色较多) 1. 标题 2.列表 3.引用 (1)一层引用 (2)多层引用 4.图片(如果是本地:按照语法写图片路径:如果是 ...

  3. javaScript 设计模式之中介者模式示例

    飞机把注册信息放到铁塔里,发送数据到铁塔,报告其它的飞机一些信息. var feiji = function( name ){ this.name = name; } feiji.prototype. ...

  4. 洛谷P4170 [CQOI2007]涂色(区间dp)

    题意 题目链接 Sol 震惊,某知名竞赛网站竟照搬省选原题! 裸的区间dp,\(f[l][r]\)表示干掉\([l, r]\)的最小花费,昨天写的时候比较困于是就把能想到的转移都写了.. // luo ...

  5. c#无边框窗体移动

    [DllImport("user32.dll")]//拖动无窗体的控件 public static extern bool ReleaseCapture(); [DllImport ...

  6. VRRP技术总结和配置实践

    1.VRRP作为网关可靠性的常用方法,基本思路是,两台路由器组成一个虚拟路由器,通过VRRP协议对内网呈现一个虚拟的网关ip, 以便让局域网内部的终端通过这个虚拟网关对外进行通信. 2.VRRP的最简 ...

  7. Android图片的Base64编码与解码

    Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,Base64就是一种基于64个可打印字符来表示二进制数据的方法. Base64编码是从二进制到字符的过程,可用于在HTTP环境下传递较 ...

  8. 「Android」消息驱动Looper和Handler类分析

    Android系统中的消息驱动工作原理: 1.有一个消息队列,可以往这个消息队列中投递消息; 2.有一个消息循环,不断的从消息队列中取得消息,然后处理. 工作流程: 1.事件源将待处理的消息加入到消息 ...

  9. Android Studio手动打包

    项目写完了,现在需要把应用上传到市场上面,那么怎么把项目打包成apk?(Android的可安装文件). 1. 创建签名文件 2. 填写好签名参数 3. 生成APK 注意:签名的密码和密匙的密码注意保管 ...

  10. C# 代码中调用 Javascript 代码段以提高应用程序的配置灵活性(使用 Javascript .NET 与 Jint)

    一般来说,我们需要在开发应用软件的配置文件中,添加一些参数,用于后续用户根据实际情况,自行调整. 配置参数,可以放在配置文件中.环境变量中.或数据库表中(如果使用了数据库的话).通常,配置数据,以 k ...