集群环境

hadoop-2.8.3搭建详细请查看hadoop系列文章

scala-2.11.12环境请查看scala系列文章

jdk1.8.0_161

spark-2.4.0-bin-hadoop2.7

192.168.217.201 hadoop1.org.cn hadoop1

192.168.217.202 hadoop2.org.cn hadoop2

192.168.217.203 hadoop3.org.cn hadoop3

spark2.4.0完全分布式环境搭建

下载安装包

http://spark.apache.org/downloads.html

解压安装包

tar zxf spark--bin-hadoop2..tgz -C /usr/hdp/

环境配置

# SET SPARK_HOME
export SPARK_HOME=/usr/hdp/spark--bin-hadoop2.
export PATH=$PATH:$SPARK_HOME/bin

配置文件修改

备注:一下文件都在spark安装的conf文件目录下

文件spark-env.sh

cp spark-env.sh.template spark-env.sh

然后修改spark-env.sh,修改的内容如下:

#!/usr/bin/env bash

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.

# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program

# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos

# Options read in YARN client/cluster mode
# - SPARK_CONF_DIR, Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - YARN_CONF_DIR, to point Spark towards YARN configuration files when you use YARN
# - SPARK_EXECUTOR_CORES, Number of cores ).
# - SPARK_EXECUTOR_MEMORY, Memory per Executor (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Driver (e.g. 1000M, 2G) (Default: 1G)

# Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_HOST, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_DAEMON_CLASSPATH, to set the classpath for all daemons
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers

# Generic options for the daemons used in the standalone deploy mode
# - SPARK_CONF_DIR      Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_LOG_DIR       Where log files are stored.  (Default: ${SPARK_HOME}/logs)
# - SPARK_PID_DIR       Where the pid file is stored. (Default: /tmp)
# - SPARK_IDENT_STRING  A string representing this instance of spark. (Default: $USER)
# - SPARK_NICENESS      The scheduling priority )
# - SPARK_NO_DAEMONIZE  Run the proposed command in the foreground. It will not output a PID file.
# Options for native BLAS, like Intel MKL, OpenBLAS, and so on.
# You might ).
# - MKL_NUM_THREADS=        Disable multi-threading of Intel MKL
# - OPENBLAS_NUM_THREADS=   Disable multi-threading of OpenBLAS
export JAVA_HOME=/opt/jdk1..0_161
export SCALA_HOME=/usr/scala/scala-
export HADOOP_HOME=/usr/hdp/hadoop-
export HADOOP_CONF_DIR=/usr/hdp/hadoop-/etc/hadoop
export SPARK_MASTER_HOST=hadoop1
export SPAKR_MASTER_IP=192.168.217.201
export SPARK_LOCAL_IP=192.168.217.201
export SPARK_WORKER_MEMORY=1g
export SPARK_WORKER_CORES=
export SPARK_HOME=/usr/hdp/spark--bin-hadoop2.

文件slaves

cp slaves.template slaves

然后编辑slaves文件,添加的内容如下:

hadoop1
hadoop2
hadoop3

文件的复制

将spark整个的目录复制到另外两个节点上面。

scp -r spark--bin-hadoop2./ root@192.168.217.202:/usr/hdp/
scp -r spark--bin-hadoop2./ root@192.168.217.203:/usr/hdp

文件复制之后,在其他的两个节点上面添加spark的环境变量,同时,修改spark-env.sh文件,将export SPARK_LOCAL_IP=192.168.217.201的IP修改为该节点的IP地址。

集群启动

启动hadoop整个的集群,然后进入到spark的sbin目录下,执行start-all.sh脚本。

[root@hadoop1 hdp]# jps
 NameNode
 ResourceManager
 SecondaryNameNode
 Master
 Jps
 Worker

[root@hadoop2 conf]# jps
 Jps
 DataNode
 Worker
 NodeManager

[root@hadoop3 ~]# jps
 DataNode
 Jps
 Worker
 NodeManager

此时访问相关的页面:

坚壁清野

spark2.4.0+hadoop2.8.3全分布式集群搭建的更多相关文章

  1. 不在折腾----hadoop-2.4.1完全分布式集群搭建

    前言 * hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFS HA.YARN等.最新的hadoop-2.4.1又增加了YARN HA * 注意:apache提供的hadoop-2.4 ...

  2. Hadoop(三)手把手教你搭建Hadoop全分布式集群

    前言 上一篇介绍了伪分布式集群的搭建,其实在我们的生产环境中我们肯定不是使用只有一台服务器的伪分布式集群当中的.接下来我将给大家分享一下全分布式集群的搭建! 其实搭建最基本的全分布式集群和伪分布式集群 ...

  3. Hadoop(三)搭建Hadoop全分布式集群

    原文地址:http://www.cnblogs.com/zhangyinhua/p/7652686.html 阅读目录(Content) 一.搭建Hadoop全分布式集群前提 1.1.网络 1.2.安 ...

  4. Hadoop上路-01_Hadoop2.3.0的分布式集群搭建

    一.配置虚拟机软件 下载地址:https://www.virtualbox.org/wiki/downloads 1.虚拟机软件设定 1)进入全集设定 2)常规设定 2.Linux安装配置 1)名称类 ...

  5. 超详细从零记录Hadoop2.7.3完全分布式集群部署过程

    超详细从零记录Ubuntu16.04.1 3台服务器上Hadoop2.7.3完全分布式集群部署过程.包含,Ubuntu服务器创建.远程工具连接配置.Ubuntu服务器配置.Hadoop文件配置.Had ...

  6. 分布式实时日志系统(四) 环境搭建之centos 6.4下hbase 1.0.1 分布式集群搭建

    一.hbase简介 HBase是一个开源的非关系型分布式数据库(NoSQL),它参考了谷歌的BigTable建模,实现的编程语言为 Java.它是Apache软件基金会的Hadoop项目的一部分,运行 ...

  7. CentOS7.5搭建Hadoop2.7.6完全分布式集群

    一 完全分布式集群搭建 Hadoop官方地址:http://hadoop.apache.org/ 1  准备3台客户机 1.2 关闭防火墙,设置静态IP,主机名 关闭防火墙,设置静态IP,主机名此处略 ...

  8. Hadoop完全分布式集群搭建

    Hadoop的运行模式 Hadoop一般有三种运行模式,分别是: 单机模式(Standalone Mode),默认情况下,Hadoop即处于该模式,使用本地文件系统,而不是分布式文件系统.,用于开发和 ...

  9. hbase完整分布式集群搭建

    简介: hadoop的单机,伪分布式,分布式安装 hadoop2.8 集群 1 (伪分布式搭建 hadoop2.8 ha 集群搭建 hbase完整分布式集群搭建 hadoop完整集群遇到问题汇总 Hb ...

随机推荐

  1. face_recognition

    人脸定位import face_recognition image = face_recognition.load_image_file("your_file.jpg") face ...

  2. attr跟prop的区别:

    prop()函数的结果: 1.如果有相应的属性,返回指定属性值. 2.如果没有相应的属性,返回值是空字符串. attr()函数的结果: 1.如果有相应的属性,返回指定属性值. 2.如果没有相应的属性, ...

  3. python获取机器信息脚本(网上寻找的)

    获取机器信息(待测试) # -*- coding: UTF-8 -*- import psutil import json import os import socket import struct ...

  4. chrome浏览器onunload方法无法执行window.location.href

    记录用户不正常退出,如关闭浏览器的时候,执行onunload方法,跳回后台记录用户已经退出的信息,在ie上可以正常跳转,但在Firefox和chrome上却无法跳转. 测试后发现以下方法可以实现,支持 ...

  5. USD词汇表(USD Glossary)

    这篇文章是在学习USD的过程中龟速写成的,目的是将USD的核心设计.相关概念的说明.以及配套API整理出来,为后续进行的USD开发工作提供中文资料支持. 实际上也只有充分理解了USD设计中的每一个知识 ...

  6. SpringMVC Mybatis Spring

    Spring MVC Mybatis整合过程中 Mapper.java 不需要使用 @componenet, Service 等spring注解 但是在service 中创建mapper对象的时候是需 ...

  7. 浏览器端使用javascript调用腾讯翻译api

    最近在学习的小玩意,发现腾讯的文档十分坑爹,里面有很多错误的指示. 不过腾讯的机器翻译还是很牛的,我觉得翻译水准比谷歌好很多. 腾讯的机器翻译貌似在试用阶段,不收费,用QQ或微信登录即可申请使用. 首 ...

  8. 【C++】关键字inline

    1. 引入inline关键字的原因 在c/c++中,为了解决一些频繁调用的小函数大量消耗栈空间(栈内存)的问题,特别的引入了inline修饰符,表示为内联函数. 栈空间就是指放置程序的局部数据(也就是 ...

  9. Python语法进阶

    1.变量进阶 2.局部变量.全局变量  3.函数进阶 4.函数进阶

  10. pc端布局的一点思考

    编写pc端页面需要注意些什么? 1.自适应最小屏幕,在小屏幕上样式不能错乱. 在桌面屏幕各分辨率使用比例中可以看到各桌面分辨率的使用比例,日常pc端开发我们会考虑到适配1024宽度大小的屏幕. 对于管 ...