题意:

  设从1到每个点的最短距离为d,求删除几条边后仍然使1到每个点的距离为d,使得剩下的边最多为k

解析:

  先求来一遍spfa,然后bfs遍历每条路,如果d[v] == d[u] + Node[i].w 则说明这条路要保留

  注意是按着走的路的顺序输出的 wa1

  注意最大值设为0x3f  wa3  学到了。。。emm 用memset设置数组为0x3f是无穷大

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#include <limits.h>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int head[maxn], vis[maxn], nex[maxn];
LL d[maxn];
int cnt, n, m, s, t, k;
vector<int> g; struct node
{
int u, v;
LL w;
}Node[maxn]; void add_(int u, int v, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int w)
{
add_(u, v, w);
add_(v, u, w);
} int spfa()
{
mem(d, 0x3f);
deque<int> Q;
Q.push_front(s);
d[s] = ;
vis[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop_front();
vis[u] = ;
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] > d[u] + Node[i].w)
{
d[v] = d[u] + Node[i].w;
if(!vis[v])
{
if(Q.empty()) Q.push_front(v);
else
{
if(d[v] < d[Q.front()]) Q.push_front(v);
else Q.push_back(v);
}
vis[v] = ;
}
}
}
}
} void init()
{
mem(head, -);
g.clear();
cnt = ;
} void bfs()
{
queue<int> Q;
Q.push();
mem(vis, );
vis[] = ;
int cnt1 = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] == d[u] + Node[i].w)
{
if(!vis[v])
{
g.push_back((i + ) / );
vis[v] = ;
Q.push(v);
if(++cnt1 == k) return;
}
}
}
}
} int main()
{
// cout << 0x3f <<endl;
init();
int ans = ;
int u, v, w;
cin >> n >> m >> k;
for(int i = ; i < m; i++)
{
cin >> u >> v >> w;
add(u, v, w);
}
if(k == )
return puts("");
s = ;
spfa();
bfs(); cout << g.size() << endl;
for(int i = ; i < g.size(); i++)
cout << g[i] << " ";
cout << endl; return ;
}

  

Edge Deletion CodeForces - 1076D(水最短路)的更多相关文章

  1. Codeforces 1076D Edge Deletion(最短路树)

    题目链接:Edge Deletion 题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多.输出m ...

  2. Codeforces 1076D Edge Deletion 【最短路+贪心】

    <题目链接> 题目大意: n个点,m条边的无向图,现在需要删除一些边,使得剩下的边数不能超过K条.1点为起点,如果1到 i 点的最短距离与删除边之前的最短距离相同,则称 i 为 " ...

  3. 1076D Edge Deletion 【最短路】

    题目:戳这里 题意:求出1到所有点的最短路径后,把边减到小于等于k条,问保留哪些边可以使仍存在的最短路径最多. 解题思路:这题就是考求最短路的原理.比如dijkstra,用优先队列优化后存在队列中的前 ...

  4. Educational Codeforces Round 54 (Rated for Div. 2) D:Edge Deletion

    题目链接:http://codeforces.com/contest/1076/problem/D 题意:给一个n个点,m条边的无向图.要求保留最多k条边,使得其他点到1点的最短路剩余最多. 思路:当 ...

  5. Codeforces 1076D——最短路算法

    题目 给你一个有n个顶点.m条边的无向带权图.需要擦除一些边使得剩余的边数不超过k,如果一个点在原始图到顶点1的最短距离为d,在删边后的图中到顶点的最短距离仍是d,则称这种点是 good.问如何删边, ...

  6. 【CF1076D】Edge Deletion 最短路+贪心

    题目大意:给定 N 个点 M 条边的无向简单联通图,留下最多 K 条边,求剩下的点里面从 1 号顶点到其余各点最短路大小等于原先最短路大小的点最多怎么构造. 题解:我们可以在第一次跑 dij 时直接采 ...

  7. The Two Routes CodeForces - 601A(水最短路)

    一个完全图 1和n肯定有一条路  不是公路就是铁路  另= 另一个跑遍最短路即可 #include <bits/stdc++.h> #define mem(a, b) memset(a, ...

  8. Educational Codeforces Round 54 (Rated for Div. 2) D Edge Deletion (SPFA + bfs)

    题目大意:给定你一个包含n个点m条边的无向图,现在最多在图中保留k条边,问怎么删除多的边,使得图中良好的节点数最多,求出保留在图中的边的数量和编号. 良好的节点定义为:删除某条边后该点到点1的最短距离 ...

  9. codeforces DIV2 D 最短路

    http://codeforces.com/contest/716/problem/D 题目大意:给你一些边,有权值,权值为0的表示目前该边不存在,但是可以把0修改成另外一个权值.现在,我们重新建路, ...

随机推荐

  1. 了解可执行的NPM包

    NPM是Node.js的包管理工具,随着Node.js的出现,以及前端开发开始使用gulp.webpack.rollup以及其他各种优秀的编译打包工具(大多数采用Node.js来实现),大家都开始接触 ...

  2. C++ string中的find()函数

    1.string中find()返回值是字母在母串中的位置(下标记录),如果没有找到,那么会返回一个特别的标记npos.(返回值可以看成是一个int型的数) #include<cstring> ...

  3. 抽象代数-p22商群

    G/e={g{e}|g∈G}={{g}|g∈G}=G G/G={gG|g∈G}={G}   (gG=G左乘g是G上的双射,它的逆映射是左乘g^-1)  所以 G/G  只有一个元素,所有G  就只能是 ...

  4. 软件工程(FZU2015) 增补作业

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 说明 张老师为FZU软件工程2015班级添加了一次增补作业,总分10分,deadline是2016/01/01-2016/ ...

  5. httpd sshd firewalld 服务后面的d的意思

    在操作系统中,一般系统的服务都是以后台进程的方式存在,而且都会常驻系统中,直到关机才结束.这类服务也称Daemon,在Linux系统中就包含许多的Daemon. 判断Daemon最简单的方法就是从名称 ...

  6. jmeter5.0生成html报告 快速入门

    JMeter性能测试5.0时代之-多维度的图形化HTML报告 快速入门 1.确认基本配置 在jmeter.properties或者user.properties确认如下配置项: jmeter.save ...

  7. 为什么js中要用void 0 代替undefined

    这个是Backbone.js中的一句源码 if (callback !== void 0 && 'context' in opts && opts.context == ...

  8. Android——Activity的简绍

    Activity Activity的运行机制其实和JavaEE中的servlet很像,而我们的Android系统也就相当与其servlet容器,Activity在其中进行创建实例.初始化.运行.销毁等 ...

  9. python3 自动识图

    一.安装依赖库 pip install pytesseract pip install pillow 二.安装识图引擎tesseract-ocr https://pan.baidu.com/s/1Qa ...

  10. 解决mybatis generator警告Cannot obtain primary key information from the database, generated objects may be incomplete

    使用 mybatis generator 生成pojo.dao.mapper时 经常出现 Cannot obtain primary key information from the database ...