画一个边长为r的正方形和半径为r的四分之一的圆(如下图所示),向上面随机投掷飞镖,通过计算落在星星区域和整体区域的飞镖比例,即可求出π值。

公式推导如下:

假设正方形的边长r为1,那么飞镖落在星星区域内的任意点(x, y),其坐标的平方相加值(x2+y2)必然小于1。

代码如下:

import random

def find_pi(num_of_times):  #num_of_times为投掷飞镖的次数
num1,num2=0,0 #num1为飞镖投掷在星星区域内的次数,num2为飞镖投掷在圆点区域内的次数
for i in range(num_of_times): #每次投掷飞镖后,飞镖落下的点坐标(x,y),都为0~1之间的浮点数
x=random.random()
y=random.random()
if (x**2+y**2)<1: num1+=1 #如果其点坐标平方相加的值小于1,那么说明该飞镖落在圆弧区域内,num1增加一次,反之,num2增加一次
else: num2+=1
pi=(4*(num1/(num1+num2)))
return pi

投掷1000000次飞镖试一下:

print(find_pi(1000000))

几次运行结果都已经和实际π值相差不大:

3.14326

3.140684

3.141544

参考:麻省理工学院公开课:计算机科学及编程导论(第20课)

用随机投掷飞镖法计算Pi值(Randomness Throwing dart Pi Python)的更多相关文章

  1. 使用不同的方法计算TF-IDF值

    摘要 这篇文章主要介绍了计算TF-IDF的不同方法实现,主要有三种方法: 用gensim库来计算tfidf值 用sklearn库来计算tfidf值 用python手动实现tfidf的计算 总结 之所以 ...

  2. Hadoop下MapReduce实现Pi值的计算

    Hadoop自带的例子中,有一个计算Pi值的例子. 这个程序的原理是这样的.假如有一个边长为1的正方形.以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形.在正方形里随 ...

  3. 查表法计算CRC16校验值

    CRC16是单片机程序中常用的一种校验算法.依据所采用多项式的不同,得到的结果也不相同.常用的多项式有CRC-16/IBM和CRC-16/CCITT等.本文代码采用的多项式为CRC-16/IBM: X ...

  4. 局部敏感哈希Locality Sensitive Hashing(LSH)之随机投影法

    1. 概述 LSH是由文献[1]提出的一种用于高效求解最近邻搜索问题的Hash算法.LSH算法的基本思想是利用一个hash函数把集合中的元素映射成hash值,使得相似度越高的元素hash值相等的概率也 ...

  5. Mapreduce案例之Pi值估算

    题目: 这个程序的原理是这样的.假如有一个边长为1的正方形.以正方形的一个端点为圆心,以1为半径,画一个圆弧,于是在正方形内就有了一个直角扇形.在正方形里随机生成若干的点,则有些点是在扇形内,有些点是 ...

  6. 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1573   ...

  7. BZOJ 3564: [SHOI2014]信号增幅仪(随机增量法)

    如果是个圆的话好办,如果是拉成椭圆呢?直接压回去!!! 然后随机增量法就行了 CODE: #include<cstdio> #include<iostream> #includ ...

  8. BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)

    今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...

  9. python模拟蒙特·卡罗法计算圆周率

    蒙特·卡罗方法是一种通过概率来得到问题近似解的方法,在很多领域都有重要的应用,其中就包括圆周率近似值的计问题. 假设有一块边长为2的正方形木板,上面画一个单位圆,然后随意往木板上扔飞镖,落点坐标(x, ...

随机推荐

  1. oracle 11g空表不能exp导出问题解决方案

    oracle 11g空表不能exp导出问题解决方案 最近由于要进行迁移服务器代码和数据库,突然发现导出的表少了,通过排查发现空表尽然没有exp导出,真是郁闷啊,虽然是空表没数据,但也不能没有啊,如何是 ...

  2. H5 24-CSS三大特性之继承性

    24-CSS三大特性之继承性 我是段落 我是段落 我是超链接 我是大标题 <!DOCTYPE html> <html lang="en"> <head ...

  3. PHP实用代码片段(四)

    1. 删除文件夹内容 function Delete($path) { if (is_dir($path) === true) { $files = array_diff(scandir($path) ...

  4. Django之路由分发反向解析

    Django路由分发|反向解析 当一个Django中有多个app时,路由会有很多,将这些路由都写在与项目同名的文件夹下就会显得很多,很乱.并且在协同开发的时候容易出现相同的命名,当项目合并后就会出现路 ...

  5. css横线中间放图片或者文字

    效果图: 先贴代码 HTML: <div class="forshow middle"> <div class="flex"></ ...

  6. 并发包 concurrent(一) Atomic

    1:基础概念 悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁.传 ...

  7. Azure系列2.1.4 —— BlobInputStream

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  8. 【译】Focused and Diffuse Modes(专注与发散模式)

    Focused and Diffuse Modes ---文章来源:coursera 面对一个问题,当无论如何都想不出办法时,你会怎么做呢?对于僵尸们来说,只需简单地不断用脑袋撞墙即可.然而活生生的大 ...

  9. 关于Navicat连接虚拟机宝塔数据库

    1.由于虚拟机安装的宝塔面板,目前没找到数据库安全配置文件,所以没能用Navicat连接数据库 2.在宝塔面板=>安全下 放行 3306 端口 即可以 连接成功 跟将bind-address = ...

  10. Python 基础知识----流程控制

    判断语句 循环语句 嵌套