高斯混合模型(GMM) - 混合高斯回归(GMR)
http://www.zhihuishi.com/source/2073.html
高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度。对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。 在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。
我们首先要提起背景和前景的概念,前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型(GMM,Gaussian mixture model)是建模最为成功的方法之一,同时GMM可以用在监控视频索引与检索。
混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。
高斯混合模型(GMM) - 混合高斯回归(GMR)的更多相关文章
- 3. EM算法-高斯混合模型GMM
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...
- 贝叶斯来理解高斯混合模型GMM
最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...
- 6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...
- 5. EM算法-高斯混合模型GMM+Lasso
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...
- 4. EM算法-高斯混合模型GMM详细代码实现
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...
- EM算法和高斯混合模型GMM介绍
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...
- 高斯混合模型GMM与EM算法的Python实现
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...
- Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法: (1)K-means (2)Latent Dirichlet allocation (LDA) ...
- 高斯混合模型 GMM
本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来: 方差:用来描述数据的离散或波动程度. \[var(X) = \frac{\sum_{i=1}^N( X_ ...
- 机器学习笔记(十)EM算法及实践(以混合高斯模型(GMM)为例来次完整的EM)
今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectati ...
随机推荐
- Java后端面试的一切技巧和常见的问题经验总结
原文地址:cnblogs.com/JavaArchitect/p/10011253.html 上周,密集面试了若干位Java后端候选人,工作经验在3到5年间.我的标准其实不复杂(适用90%小小小公司, ...
- MM-移动类型
链接:SAP移动类型 移动类型 备注 业务类型 SAP中事务代码 备注 101 采购订单收货.生产订单收货 收货 migo CO11N顶层处理移动类型\跨工厂收货 102 采购订单收货冲销 收货 ...
- 常用Docker命令
1.镜像操作 获取镜像 docker pull NAME[:TAG] #如果不显示指定TAG,默认选择latest标签 查看本地所有镜像 docker images 查看镜像详细信息 docker i ...
- Java内存的 静态方法和实例方法的区别及使用场景
注意:变量指基本数据类型非对象,局部变量不能被静态修饰 1.(静态)成员变量存放在data segment区(数据区),字符串常量也存放在该区 2.非静态变量,new出来的对象存放在堆内存,所有局部变 ...
- MySQL实现批量检查表并进行repair与optimize的方法
这篇文章主要介绍了MySQL实现批量检查表并进行repair与optimize的方法,结合实例形式分析了MySQL批量修复与优化表的相关技巧,需要的朋友可以参考下 本文实例讲述了MySQL实现批量检查 ...
- His表(简化)
门诊登记,门诊结算,门诊处方,住院登记,住院结算,住院处方,转诊登记,人员表,行政区划,登录日志,菜单,疾病,药品,诊疗,数据字典,机构,科室等
- NIO学习笔记
零.前言 这里整理摘录了我了解NIO的一些笔记. 参考资料: 1.深入浅出NIO之Channel.Buffer 2.深入浅出NIO之Selector实现原理 3.Java NIO vs. IO 一.N ...
- 第七周博客作业 <西北师范大学| 周安伟>
第七周博客作业 助教博客链接:https://home.cnblogs.com/u/zaw-315/ 本周无评作业 查看了同学们提交的对实验四的附加实验项目互评.其中对博文结构,内容来评价是否符合作业 ...
- airTest 使用体验
airTest是国内网易自研的一套基于图像识别进行UI自动化测试的框架,目前已经可以支持andriod,ios,web端的UI测试,在google开发者大会上得到了google的高度认可. 最近在学习 ...
- Huawei BGP和OSPF双边界重分布(一)
网络拓扑: PS:本例使用明细前缀列表双边界引入 S5700-LSW1 ================================================================ ...