treap基本操作
利用rand保持堆的特性
const int N=; int ls[N],rs[N],v[N],p[N],cnt[N],siz[N];
// 权值 优先级
inline void update(int &k){
siz[k]=siz[ls[k]]+siz[rs[k]];}
inline void zig(int &k){//treap旋转上实际上是在根节点,不记录fa
int y=ls[k];// < 入
ls[k]=rs[y];
rs[y]=k; siz[y]=siz[k];
update(k);
k=y;//令k返回根节点
}
inline void zag(int &k){
int y=rs[k];
rs[y]=ls[y];
ls[y]=k; siz[y]=siz[k];
update(k);
k=y;
} inline void insert(int &k,int &val){
if(!k){
k=++idx;v[k]=val;p[k]=rand();
cnt[k]=siz[k]=;return;}
else ++siz[k]; if(val<v[k]){
insert(ls[k],val);
if(p[ls[k]]<p[k]) zig(k);}
else if(v[k]==val) ++cnt[k];
else{insert(rs[k],val);
if(p[rs[k]]<p[k]) zag(k);}
} inline void del(int &k,int &val){
//找到链节点或者数值>1即可直接不用再递归
if(val==v[k]){
if(<cnt[k]) --cnt[k],--siz[k];
//数值>1
else if(!ls[k]||!rs[k]) k=ls[k]+rs[k];
//链结点
//两个非空节点
else if(p[ls[k]]<p[rs[k]]) zig(k),del(k,val);
else zag(k),del(k,val);
return;
}
--siz[k];
if(val<v[k]) del(ls[k],val);
else del(rs[k],val);
}
//前驱后继
inline int pre(int &val){
int k=rt,ans=-inf;
while(k){
if(v[k]<=val) ans=v[k],k=rs[k];
else k=ls[k];}
return ans;}
inline int beh(int &val){
int k=rt,ans=-inf;
while(k){
if(val<=v[k]) ans=v[k],k=ls[k];
else k=rs[k];}
return ans;}
//
inline int queryKth(int x){
int k=rt;
while(k){
if(siz[ls[k]]<x&&x<=siz[ls[k]]+cnt[k]) return v[k];
if(x<=siz[ls[k]]) k=ls[k];
else k-=siz[ls[k]]+cnt[k],k=rs[k];}
return ;
}
inline int queryrank(int &val){
int k=rt,res=;
while(k){
if(v[k]==val) return res+siz[ls[k]]+;
else if(val<v[k]) k=ls[k];
else res+=siz[ls[k]]+cnt[k],k=rs[k];}
return res;
}
treap基本操作的更多相关文章
- 数据结构之Treap
1. 概述 同splay tree一样,treap也是一个平衡二叉树,不过Treap会记录一个额外的数据,即优先级.Treap在以关键码构成二叉搜索树的同时,还按优先级来满足堆的性质.因而,Treap ...
- BZOJ3196 Tyvj1730 二逼平衡树 【树套树】 【线段树套treap】
BZOJ3196 Tyvj1730 二逼平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名 ...
- Treap基本用法总结
Treap=Tree+Heap 起名的人非常有才 Treap是啥? 一棵二叉搜索树可能退化成链,那样各种操作的效率都比较低 于是可爱的Treap在每个节点原先值v的基础上加了一个随机数rnd,树的形 ...
- c++之路进阶——codevs4543(普通平衡树)
4543 普通平衡树 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 这是一道水题 顺便祝愿LEZ和ZQQ 省 ...
- Treap入门(转自NOCOW)
Treap 来自NOCOW Treap,就是有另一个随机数满足堆的性质的二叉搜索树,其结构相当于以随机顺序插入的二叉搜索树.其基本操作的期望复杂度为O(log n). 其特点是实现简单,效率高于伸展树 ...
- Treap树的基础知识
原文 其它较好的的介绍:堆排序 AVL树 树堆,在数据结构中也称Treap(事实上在国内OI界常称为Traep,与之同理的还有"Tarjan神犇发明的"Spaly),是指有一个随 ...
- 三大平衡树(Treap + Splay + SBT)总结+模板[转]
Treap树 核心是 利用随机数的二叉排序树的各种操作复杂度平均为O(lgn) Treap模板: #include <cstdio> #include <cstring> #i ...
- 初识Treap
Treap,简单的来说就是Tree+Heap,是一颗平衡树,每个节点有两个信息:1.key:当前节点的关键字 :2.fix:当前节点优先级.key满足二叉排序数的性质,即左儿子都比当前节点小,右儿子都 ...
- 查找——图文翔解Treap(树堆)
之前我们讲到二叉搜索树,从二叉搜索树到2-3树到红黑树到B-树. 二叉搜索树的主要问题就是其结构与数据相关,树的深度可能会非常大,Treap树就是一种解决二叉搜索树可能深度过大的还有一种数据结构. T ...
随机推荐
- BZOJ2406矩阵
题目描述 题解 最大值最小,一眼二分没的说. 然后考虑建出这么个图,每行看做一个点,每列看做一个点,每个点看做一条连接行与列的边,源点向每行连s-mid__s+mid的边,行与列连L__R的边,列到汇 ...
- 利用LVS+Keepalived搭建Mysql双主复制高可用负载均衡环境
应用背景: MySQL复制(主主,主从...)能在保证数据的备份的同时也能够做读写分离分摊系统压力,但是发生单点故障时,需要手动 切换到另外一台主机.LVS和Keppalived可以设定一个VIP来实 ...
- CodeForces - 589D(暴力+模拟)
题目链接:http://codeforces.com/problemset/problem/589/D 题目大意:给出n个人行走的开始时刻,开始时间和结束时间,求每个人分别能跟多少人相遇打招呼(每两人 ...
- Java 帝国之建造者模式
Java 帝国之建造者模式 原创: 王钦誉 码农翻身 今天 本文来自王钦誉的投稿,老刘做了较大修改. 原文地址: https://xiaoqinyu0000.github.io/2018/06/11/ ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
- vue $emit 用法
1.父组件可以用props传递给子组件. 2.子组件可以利用$emit触发父组件事件. vm.$emit('父组件方法',参数); vm.$on(event,fn); $on监听event事件后运行f ...
- 【CF375D】Tree and Queries
题目大意:给定一棵 N 个节点的有根树,1 号节点为根节点,每个节点有一个颜色.有 M 个询问,每次询问以 i 为根的子树中颜色大于等于 K 的有多少种. 题解:子树询问直接 dfs 序转化成序列问题 ...
- 第三篇-以LinearLayout进行Android界面设计
一.新建一个项目 选择empty activity,此时项目里面没有main.java的文件. 二.手动创建java文件 Project那儿选择android模式,在app/java/com....一 ...
- django中实现组合搜索
一.简介 # 组合搜索# 技术方向:自动化,测试,运维,前端# 分类:Python Linux JavaScript OpenStack Node.js GO# 级别:初级 中级 高级 骨灰级 有4张 ...
- 0基础如何学Android开发
链接:http://pan.baidu.com/s/1bIEIse 密码:ky7w https://pan.baidu.com/s/1i53bs6x提取码:0pwthttps://www.zhihu. ...