treap基本操作
利用rand保持堆的特性
const int N=; int ls[N],rs[N],v[N],p[N],cnt[N],siz[N];
// 权值 优先级
inline void update(int &k){
siz[k]=siz[ls[k]]+siz[rs[k]];}
inline void zig(int &k){//treap旋转上实际上是在根节点,不记录fa
int y=ls[k];// < 入
ls[k]=rs[y];
rs[y]=k; siz[y]=siz[k];
update(k);
k=y;//令k返回根节点
}
inline void zag(int &k){
int y=rs[k];
rs[y]=ls[y];
ls[y]=k; siz[y]=siz[k];
update(k);
k=y;
} inline void insert(int &k,int &val){
if(!k){
k=++idx;v[k]=val;p[k]=rand();
cnt[k]=siz[k]=;return;}
else ++siz[k]; if(val<v[k]){
insert(ls[k],val);
if(p[ls[k]]<p[k]) zig(k);}
else if(v[k]==val) ++cnt[k];
else{insert(rs[k],val);
if(p[rs[k]]<p[k]) zag(k);}
} inline void del(int &k,int &val){
//找到链节点或者数值>1即可直接不用再递归
if(val==v[k]){
if(<cnt[k]) --cnt[k],--siz[k];
//数值>1
else if(!ls[k]||!rs[k]) k=ls[k]+rs[k];
//链结点
//两个非空节点
else if(p[ls[k]]<p[rs[k]]) zig(k),del(k,val);
else zag(k),del(k,val);
return;
}
--siz[k];
if(val<v[k]) del(ls[k],val);
else del(rs[k],val);
}
//前驱后继
inline int pre(int &val){
int k=rt,ans=-inf;
while(k){
if(v[k]<=val) ans=v[k],k=rs[k];
else k=ls[k];}
return ans;}
inline int beh(int &val){
int k=rt,ans=-inf;
while(k){
if(val<=v[k]) ans=v[k],k=ls[k];
else k=rs[k];}
return ans;}
//
inline int queryKth(int x){
int k=rt;
while(k){
if(siz[ls[k]]<x&&x<=siz[ls[k]]+cnt[k]) return v[k];
if(x<=siz[ls[k]]) k=ls[k];
else k-=siz[ls[k]]+cnt[k],k=rs[k];}
return ;
}
inline int queryrank(int &val){
int k=rt,res=;
while(k){
if(v[k]==val) return res+siz[ls[k]]+;
else if(val<v[k]) k=ls[k];
else res+=siz[ls[k]]+cnt[k],k=rs[k];}
return res;
}
treap基本操作的更多相关文章
- 数据结构之Treap
1. 概述 同splay tree一样,treap也是一个平衡二叉树,不过Treap会记录一个额外的数据,即优先级.Treap在以关键码构成二叉搜索树的同时,还按优先级来满足堆的性质.因而,Treap ...
- BZOJ3196 Tyvj1730 二逼平衡树 【树套树】 【线段树套treap】
BZOJ3196 Tyvj1730 二逼平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名 ...
- Treap基本用法总结
Treap=Tree+Heap 起名的人非常有才 Treap是啥? 一棵二叉搜索树可能退化成链,那样各种操作的效率都比较低 于是可爱的Treap在每个节点原先值v的基础上加了一个随机数rnd,树的形 ...
- c++之路进阶——codevs4543(普通平衡树)
4543 普通平衡树 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 这是一道水题 顺便祝愿LEZ和ZQQ 省 ...
- Treap入门(转自NOCOW)
Treap 来自NOCOW Treap,就是有另一个随机数满足堆的性质的二叉搜索树,其结构相当于以随机顺序插入的二叉搜索树.其基本操作的期望复杂度为O(log n). 其特点是实现简单,效率高于伸展树 ...
- Treap树的基础知识
原文 其它较好的的介绍:堆排序 AVL树 树堆,在数据结构中也称Treap(事实上在国内OI界常称为Traep,与之同理的还有"Tarjan神犇发明的"Spaly),是指有一个随 ...
- 三大平衡树(Treap + Splay + SBT)总结+模板[转]
Treap树 核心是 利用随机数的二叉排序树的各种操作复杂度平均为O(lgn) Treap模板: #include <cstdio> #include <cstring> #i ...
- 初识Treap
Treap,简单的来说就是Tree+Heap,是一颗平衡树,每个节点有两个信息:1.key:当前节点的关键字 :2.fix:当前节点优先级.key满足二叉排序数的性质,即左儿子都比当前节点小,右儿子都 ...
- 查找——图文翔解Treap(树堆)
之前我们讲到二叉搜索树,从二叉搜索树到2-3树到红黑树到B-树. 二叉搜索树的主要问题就是其结构与数据相关,树的深度可能会非常大,Treap树就是一种解决二叉搜索树可能深度过大的还有一种数据结构. T ...
随机推荐
- Visible Trees HDU - 2841(容斥)
对于已经满足条件的(x1,y1),不满足条件的点就是(n*x1,n*y1),所以要求的就是满足点(x,y)的x,y互质,也就是gcd(x,y) == 1,然后就可以用之前多校的方法来做了 另f[i] ...
- BZOJ4669抢夺(费用流+二分答案)
题目描述 大战将至, 美国决定实行计划经济.美国西部总共有 N 个城市,编号 为 0 ∼ N − 1,以及 M 条道路,道路是单向的.其中城市 0 是一个大城 市,里面住着 K 个人,而城市 N − ...
- debugger
今天爬取cfda时遇到的困难,一旦开启了调试,就debugger pause, ???还有这种操作 一顿google,百度,解决了这个问题,点一下Deactivate breakPoints,然后点一 ...
- 汽车控制器LIMPHOME电路设计
摘要:本文介绍汽车控制器上常用的3种LIMPHOME电路设计方法,用于在单片机复位重启期间仍能保证外部输出正确性,确保行车安全. 在电子电气领域,单片机使用非常广泛,单片机的复位重启是设计时必须 ...
- 数组拆分I
题目描述 给定长度为 2n 的数组, 你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), ..., (an, bn) ,使得从1 到 n 的 min(ai, bi) 总和最 ...
- This license xxx has been cancelled 解决
上节回顾:JetBrains全家桶破解思路 hosts屏蔽一下即可,Linux是:/etc/hosts 0.0.0.0 account.jetbrains.com 重新输入Code即可,最后补一个地址 ...
- Python3 与 C# 基础语法对比(List、Tuple、Dict、Set专栏)
Code:https://github.com/lotapp/BaseCode 多图旧版:https://www.cnblogs.com/dunitian/p/9156097.html 在线预览: ...
- Python基础教程2上的一处打印缺陷导致的代码不完整#1
#1对代码的完善的 出现打印代码处缺陷截图: 图片上可以看到,定义的request根本没有定义它就有了.这个是未定义的,会报错的,这本书印刷问题,这个就是个坑,我也是才发现.花了点时间脱坑. 现在发完 ...
- SWOT分析法——进行项目管理的高效方法
SWOT分析法是什么 SWOT分析法,即态势分析法,就是将与研究对象密切相关的各种主要内部优势.劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配 ...
- Spring 学习笔记一
1.IOC,DI. 2.装配bean基于xml(实例化,声明周期,后处理bean,属性注入).3.装配bean基于注解 1 spring框架概述 1.1 什么是spring l Sp ...