python ddt
#!/usr/bin/env/python
# -*- coding: utf-8 -*-
# @Time : 2018/12/15 15:27
# @Author : ChenAdong
# @Email : aiswell@foxmail.com import unittest
import ddt lst = [1, 2, 3]
dic = {"userName": "chen"}
tur = (1, 2, 3)
s = {1, 2, 3} @ddt.ddt
class Test(unittest.TestCase): @ddt.data(*lst)
def test_list(self, data):
print("test_list")
print(data)
print("==================") @ddt.data(*dic)
def test_dictionary(self, data):
print("test_dic")
print(data)
print("==================") @ddt.file_data("ddt_test001.json")
def test_file(self, key):
print(key) @ddt.file_data("ddt_test.json")
@ddt.unpack
def test_file(self, start, end, value):
print(start, end, value) if __name__ == "__main__":
unittest.main() """
# 付上ddt-help
E:\myworkspace\python_workspace\tools\venv\Scripts\python.exe E:/myworkspace/python_workspace/projects/tmp/test002.py
Help on module ddt:
NAME
ddt
DESCRIPTION
# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/txels/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/txels/ddt/blob/master/LICENSE.md
FUNCTIONS
add_test(cls, test_name, test_docstring, func, *args, **kwargs)
Add a test case to this class.
The test will be based on an existing function but will give it a new
name.
data(*values)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
ddt(cls)
Class decorator for subclasses of ``unittest.TestCase``.
Apply this decorator to the test case class, and then
decorate test methods with ``@data``.
For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``.
The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1.
For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead.
For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key.
feed_data(func, new_name, test_data_docstring, *args, **kwargs)
This internal method decorator feeds the test data item to the test.
file_data(value)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict.
In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name.
In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data.
idata(iterable)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
is_trivial(value)
mk_test_name(name, value, index=0)
Generate a new name for a test case.
It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``.
We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is.
A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
process_file_data(cls, name, func, file_attr)
Process the parameter in the `file_data` decorator.
unpack(func)
Method decorator to add unpack feature.
DATA
DATA_ATTR = '%values'
FILE_ATTR = '%file_path'
UNPACK_ATTR = '%unpack'
index_len = 5
trivial_types = (<class 'NoneType'>, <class 'bool'>, <class 'int'>, <c...
VERSION
1.2.1
FILE
e:\myworkspace\python_workspace\tools\venv\lib\site-packages\ddt.py
None
Process finished with exit code 0
"""
python ddt的更多相关文章
- python DDT读取excel测试数据
转自:http://www.cnblogs.com/nuonuozhou/p/8645129.html ddt 结合单元测试一起用 ddt(data.driven.test):数据驱动测试 由外部 ...
- python ddt数据驱动(简化重复代码)
在接口自动化测试中,往往一个接口的用例需要考虑 正确的.错误的.异常的.边界值等诸多情况,然后你需要写很多个同样代码,参数不同的用例.如果测试接口很多,不但需要写大量的代码,测试数据和代码柔合在一起, ...
- python ddt 实现数据驱动一
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python+ddt+unittest+excel+request实现接口自动化
接口自动化测试流程:需求分析-用例设计--脚本开发--测试执行--结果分析1.获取接口文档,根据文档获取请求方式,传输协议,请求参数,响应参数,判断测试是否通过设计用例2.脚本开发:使用request ...
- python ddt 实现数据驱动
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python ddt实现数据驱动
首先安装ddt模块,命令:pip install ddt 通常情况下,data中的数据按照一个参数传递给测试用例,如果data中含有多个数据,以元组,列表,字典等数据,需要自行在脚本中对数据进行分解或 ...
- python ddt 传多个参数值示例
import unittest from ddt import ddt,data,file_data,unpack @ddt class TestDDT(unittest.TestCase): lis ...
- python ddt模块
ddt模块包含了一个类的装饰器ddt和两个方法的装饰器: data:包含多个你想要传给测试用例的参数: file_data:会从json或yaml中加载数据: 通常data中包含的每一个值都会作为一个 ...
- Python DDT(data driven tests)模块心得
关于ddt模块的一些心得,主要是看官网的例子,加上一点自己的理解,官网地址:http://ddt.readthedocs.io/en/latest/example.html ddt(data driv ...
随机推荐
- RestyCircuitBreaker --- openresty断路器
简介 由于某些场景下服务提供方和调用方都无法做到可用性,当系统远程调用时,可能会因为某些接口变慢导致调用方大量HTTP连接被阻塞而引发雪崩. 解决思路如下: 服务提供方实现接口快速失败,当处理时间达到 ...
- mysql 开发基础系列7 流程函数与其它函数
一.流程函数 -- 创建表来介绍 ,)); ,),(,), (,),(,),(,), (,NULL); SELECT * FROM salary 1. if(value,t,f) 超过2000的用h ...
- 发福利了!!超过100本的linux免费书籍
New Books Kindle Fire App Development Essentials iPhone iOS 6 Development Essentials CentOS 6 Essent ...
- mysql中外键的特点
mysql中外键的特点简单描述: 1.要求在从表中设置外键关系: 2.从表的外键列的类型和主表的关联列的类型要求一致或兼容,名称无要求: 3.主表的关联列必须是一个key(一般是主键或唯一键): 4. ...
- python使用多进程
python多线程适合IO密集型场景,而在CPU密集型场景,并不能充分利用多核CPU,而协程本质基于线程,同样不能充分发挥多核的优势. 针对计算密集型场景需要使用多进程,python的multipro ...
- NiftyNet开源平台的使用 -- 配置文件
NiftyNet开源平台的使用 NiftyNet基础架构是使研究人员能够快速开发和分发用于分割.回归.图像生成和表示学习应用程序,或将平台扩展到新的应用程序的深度学习解决方案. 详细介绍请见: ...
- #21 Python异常
前言 运行程序时经常遇到各种错误,例如:ImportError(导入模块错误).IndexError(索引错误).NameError(变量错误).SyntaxError(语法错误).Indentati ...
- FFmpeg中overlay滤镜用法-水印及画中画
本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10434209.html 1. overlay技术简介 overlay技术又称视频叠加技术 ...
- 十大经典排序算法详细总结(含JAVA代码实现)
原文出处:http://www.cnblogs.com/guoyaohua/p/8600214.html 0.排序算法说明 0.1 排序的定义 对一序列对象根据某个关键字进行排序. 0.2 术语说明 ...
- 隐藏马尔科夫模型HMM
概率图模型 HMM 先从一个具体的例子入手,看看我们要解决的实际问题.例子引自wiki.https://en.wikipedia.org/wiki/Hidden_Markov_model Consid ...