python ddt
#!/usr/bin/env/python
# -*- coding: utf-8 -*-
# @Time : 2018/12/15 15:27
# @Author : ChenAdong
# @Email : aiswell@foxmail.com import unittest
import ddt lst = [1, 2, 3]
dic = {"userName": "chen"}
tur = (1, 2, 3)
s = {1, 2, 3} @ddt.ddt
class Test(unittest.TestCase): @ddt.data(*lst)
def test_list(self, data):
print("test_list")
print(data)
print("==================") @ddt.data(*dic)
def test_dictionary(self, data):
print("test_dic")
print(data)
print("==================") @ddt.file_data("ddt_test001.json")
def test_file(self, key):
print(key) @ddt.file_data("ddt_test.json")
@ddt.unpack
def test_file(self, start, end, value):
print(start, end, value) if __name__ == "__main__":
unittest.main() """
# 付上ddt-help
E:\myworkspace\python_workspace\tools\venv\Scripts\python.exe E:/myworkspace/python_workspace/projects/tmp/test002.py
Help on module ddt:
NAME
ddt
DESCRIPTION
# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/txels/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/txels/ddt/blob/master/LICENSE.md
FUNCTIONS
add_test(cls, test_name, test_docstring, func, *args, **kwargs)
Add a test case to this class.
The test will be based on an existing function but will give it a new
name.
data(*values)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
ddt(cls)
Class decorator for subclasses of ``unittest.TestCase``.
Apply this decorator to the test case class, and then
decorate test methods with ``@data``.
For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``.
The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1.
For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead.
For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key.
feed_data(func, new_name, test_data_docstring, *args, **kwargs)
This internal method decorator feeds the test data item to the test.
file_data(value)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict.
In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name.
In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data.
idata(iterable)
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
is_trivial(value)
mk_test_name(name, value, index=0)
Generate a new name for a test case.
It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``.
We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is.
A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
process_file_data(cls, name, func, file_attr)
Process the parameter in the `file_data` decorator.
unpack(func)
Method decorator to add unpack feature.
DATA
DATA_ATTR = '%values'
FILE_ATTR = '%file_path'
UNPACK_ATTR = '%unpack'
index_len = 5
trivial_types = (<class 'NoneType'>, <class 'bool'>, <class 'int'>, <c...
VERSION
1.2.1
FILE
e:\myworkspace\python_workspace\tools\venv\lib\site-packages\ddt.py
None
Process finished with exit code 0
"""
python ddt的更多相关文章
- python DDT读取excel测试数据
转自:http://www.cnblogs.com/nuonuozhou/p/8645129.html ddt 结合单元测试一起用 ddt(data.driven.test):数据驱动测试 由外部 ...
- python ddt数据驱动(简化重复代码)
在接口自动化测试中,往往一个接口的用例需要考虑 正确的.错误的.异常的.边界值等诸多情况,然后你需要写很多个同样代码,参数不同的用例.如果测试接口很多,不但需要写大量的代码,测试数据和代码柔合在一起, ...
- python ddt 实现数据驱动一
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python+ddt+unittest+excel+request实现接口自动化
接口自动化测试流程:需求分析-用例设计--脚本开发--测试执行--结果分析1.获取接口文档,根据文档获取请求方式,传输协议,请求参数,响应参数,判断测试是否通过设计用例2.脚本开发:使用request ...
- python ddt 实现数据驱动
ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试用例,如果da ...
- python ddt实现数据驱动
首先安装ddt模块,命令:pip install ddt 通常情况下,data中的数据按照一个参数传递给测试用例,如果data中含有多个数据,以元组,列表,字典等数据,需要自行在脚本中对数据进行分解或 ...
- python ddt 传多个参数值示例
import unittest from ddt import ddt,data,file_data,unpack @ddt class TestDDT(unittest.TestCase): lis ...
- python ddt模块
ddt模块包含了一个类的装饰器ddt和两个方法的装饰器: data:包含多个你想要传给测试用例的参数: file_data:会从json或yaml中加载数据: 通常data中包含的每一个值都会作为一个 ...
- Python DDT(data driven tests)模块心得
关于ddt模块的一些心得,主要是看官网的例子,加上一点自己的理解,官网地址:http://ddt.readthedocs.io/en/latest/example.html ddt(data driv ...
随机推荐
- C++版 - LeetCode 144. Binary Tree Preorder Traversal (二叉树先根序遍历,非递归)
144. Binary Tree Preorder Traversal Difficulty: Medium Given a binary tree, return the preorder trav ...
- 导入项目的时候报错Error:Could not find com.android.support.constraint:constraint-layout:1.0.0-alpha7
问题描述 今天在导入项目的时候报错: Error:Could not find com.android.support.constraint:constraint-layout:1.0.0-alpha ...
- [NewLife.XCode]增量累加
NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netstandard,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示 ...
- python练习七—P2P下载
最近有些事儿比较忙,python的学习就断断续续,这个练习来得比预期的晚,不过还好,不管做什么,我都希望能认真对待,认真做好每一件事. 引入 这个练习原书中称作“使用XML-RPC进行文件共享”,题目 ...
- SQL语句方法语法总结(一)
1.distinct:返回不重复.唯一的值. select distinct col_name from tbl_name --表中的col_name 列的值 如果有10条一样的,仅返回一条. 2.w ...
- Java 容器源码分析之 Deque 与 ArrayDeque
Queue 也是 Java 集合框架中定义的一种接口,直接继承自 Collection 接口.除了基本的 Collection 接口规定测操作外,Queue 接口还定义一组针对队列的特殊操作.通常来说 ...
- Session提要
Session即会话,批一种持续性的.双向的链接.Sesstion和Cookie本质上没有什么区别,都是针对HTTP协议的局限性而提出的一种保持客户端和服务器间保持会话连接状态的机制. S ...
- SpringMVC学习(二)———— 参数绑定
一.参数绑定 1.1.什么是参数绑定? 客户在浏览器端会提交一些参数到服务器端,比如用户的登录等,就会传username 和 password过来,springmvc则通过参数绑定组件将请求参数的内容 ...
- 前端(一)之 HTML
前端之 HTML 前言 python 基础.网络编程.并发编程与数据库要开始告一段落了,从现在开始进入前端的学习.前端的东西多且杂,需要好好地练习. 什么是前端 前端即网站前台部分,运行在 PC 端, ...
- 【Java每日一题】20170317
20170316问题解析请点击今日问题下方的“[Java每日一题]20170317”查看(问题解析在公众号首发,公众号ID:weknow619) package Mar2017; public cla ...