Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。

Input

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。

Output

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。

Sample Input

5

1 2 1

1 3 2

1 4 1

2 5 3

Sample Output

13/25

【样例说明】

13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】

对于100%的数据,n<=20000。

Solution

[模板] 树的重心/点分治/动态点分治

点分治模板题. 似乎还可以dp...

Code

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define rep(i,l,r) for(register int i=(l);i<=(r);++i)
#define repdo(i,l,r) for(register int i=(l);i>=(r);--i)
#define il inline
typedef double db;
typedef long long ll; //---------------------------------------
const int nsz=20050; ll n,ans=0; struct te{int t,pr,v;}edge[nsz*2];
int hd[nsz],pe=1;
void adde(int f,int t,int v){edge[++pe]=(te){t,hd[f],v};hd[f]=pe;}
void adddb(int f,int t,int v){adde(f,t,v);adde(t,f,v);}
#define forg(p,i,v) for(int i=hd[p],v=edge[i].t;i;i=edge[i].pr,v=edge[i].t) int vi[nsz];
int szp[nsz],sum,maxp[nsz]{2e4+5},rt; void getrt(int p,int fa){
szp[p]=1,maxp[p]=0;
forg(p,i,v){
if(vi[v]||v==fa)continue;
getrt(v,p);
szp[p]+=szp[v];
maxp[p]=max(maxp[p],szp[v]);
}
maxp[p]=max(maxp[p],sum-szp[p]);
if(maxp[p]<maxp[rt])rt=p;
} ll cnt[4];
void getdis(int p,int fa,int d){
++cnt[d];//dis[++pd]=d;
forg(p,i,v){
if(v==fa||vi[v])continue;
getdis(v,p,(d+edge[i].v)%3);
}
} void sol1(int p,int v0,int fl){
memset(cnt,0,sizeof(cnt));
getdis(p,0,v0%3);
ans+=cnt[1]*cnt[2]*2*fl;
ans+=cnt[0]*cnt[0]*fl;
} void divide(int p){
int sum0=sum;
vi[p]=1;
sol1(p,0,1);
forg(p,i,v){
if(vi[v])continue;
sol1(v,edge[i].v,-1);
rt=0,sum=sum0-maxp[v],getrt(v,0);
divide(rt);
}
} ll sol(){
rt=0,sum=n,getrt(1,0);
divide(rt);
return ans;
} ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} int main(){
ios::sync_with_stdio(0),cin.tie(0);
cin>>n;
int a,b,c;
rep(i,2,n){
cin>>a>>b>>c;
adddb(a,b,c);
}
ll ans=sol(),g=gcd(ans,n*n);
cout<<ans/g<<'/'<<n*n/g;
return 0;
}

bzoj2152-[国家集训队]聪聪可可的更多相关文章

  1. BZOJ2152 [国家集训队] 聪聪可可 [点分治]

    题目传送门 聪聪可可 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 5237  Solved: 2750[Submit][Status][Discuss ...

  2. BZOJ2152[国家集训队]聪聪可可——点分治

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

  3. 【国家集训队】聪聪可可 ——树形DP

    感觉是一道很妙的树形DP题,充分利用到了树的性质(虽然说点分治也可以做,,,,但是本蒟蒻不会啊) 然而某Twilight_Sx大佬表示这道题真的非常水,,,本蒟蒻也只能瑟瑟发抖了 本蒟蒻表示还是要经过 ...

  4. bzoj2152 / P2634 [国家集训队]聪聪可可(点分治)

    P2634 [国家集训队]聪聪可可 淀粉质点分治板子 边权直接 mod 3 直接点分治统计出所有的符合条件的点对再和总方案数约分 至于约分.....gcd搞搞就好辣 #include<iostr ...

  5. 洛谷 P2634 [国家集训队]聪聪可可 解题报告

    P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一 ...

  6. 洛谷 P2634 [国家集训队]聪聪可可-树分治(点分治,容斥版) +读入挂+手动O2优化吸点氧才过。。。-树上路径为3的倍数的路径数量

    P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一 ...

  7. P2634 [国家集训队]聪聪可可(题解)(点分治)

    P2634 [国家集训队]聪聪可可(题解)(点分治) 洛谷题目 #include<iostream> #include<cstdlib> #include<cstdio& ...

  8. 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)

    洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...

  9. LG2634 [国家集训队]聪聪可可

    题意 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)--遇到这种问题,一般情况下石头剪刀布就好了,可是 ...

  10. 洛谷P2634 [国家集训队]聪聪可可 (点分治)

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

随机推荐

  1. 负载(Load)分析及问题排查

    平常的工作中,在衡量服务器的性能时,经常会涉及到几个指标,load.cpu.mem.qps.rt等.每个指标都有其独特的意义,很多时候在线上出现问题时,往往会伴随着某些指标的异常.大部分情况下,在问题 ...

  2. Insider Dev Tour(2018.06.28)

    时间:2018.06.28地点:北京金茂万丽酒店

  3. 【转】MySQL中的行级锁,表级锁,页级锁

    在计算机科学中,锁是在执行多线程时用于强行限制资源访问的同步机制,即用于在并发控制中保证对互斥要求的满足. 在数据库的锁机制中介绍过,在DBMS中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引 ...

  4. Git&Github基本操作与分支管理

    Git的原理涉及快照流.链表.指针等,这里不作过多叙述. 1.基本操作 git init 创建一个 Git 仓库 git clone [url] 拷贝一个 Git 仓库到本地 git add [fil ...

  5. 网络爬虫之Url含有中文如何转码

    一:背景 今天在使用Jsoup对一个网站进行数据爬取,发现爬取内容为该搜索结果是0条,请求头啥的都填好,利用Chrome开发者工具发现请求Url路径不含中文,抱着试一试的态度,我复制此段非中文参数进行 ...

  6. 面试 12:玩转 Java 快速排序

    终于轮到我们排序算法中的王牌登场了. 快速排序由于排序效率在同为 O(nlogn) 的几种排序方法中效率最高,因此经常被采用.再加上快速排序思想——分治法也确实非常实用,所以 在各大厂的面试习题中,快 ...

  7. 纯手写AJAX

    function ajax(){ //http相应对象 var xmlhttp; //判断浏览器 if(window.XMLHttpRequest){ xmlhttp = new XMLHttpReq ...

  8. hybrid App cordova打包webapp PhoneGap

    Hybrid APP基础篇(一)->什么是Hybrid App APP三种开发模式--之--HybridApp解决方案 Hybrid App开发 四大主流平台分析 Hybrid App 开发模式 ...

  9. 【评分】Beta 答辩总结

    [评分]Beta 答辩总结 总结 按时交 - 有分 晚交 - 0分 迟交一周以上 - 倒扣本次作业分数 抄袭 - 倒扣本次作业分数 由于前期不够重视,到beta评分才发现有5组的代码提交仅由一人&qu ...

  10. p9半幺群

    如何不理解划红线的地方?第二个划红线地方,请举一个例子 1.0不是幺元 2.f(1)=2, f(2)=1, f(3)=3, g(1)=2, g(2)=3, g(3)=1  fg不等于gf