题解

很显然,对于一个确定的排列,每个数字的移动规则是一定的,我们根据这个排列,把它抽象为i向a[i]连一条边,很显然最后会构成一个环,那么行数就是这些环长的lcm。

那么问题变成了把n任意进行划分,求它们能够组成的lcm的个数。

我们发现,只有素数会对答案有影响,所以我们就对每个素数以及它们的幂跑一边01背包,最后统计答案即可。

代码

#include<iostream>
#include<cstdio>
#define N 1009
using namespace std;
long long dp[N][N],prime[N],vis[N],n,tot,k;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
{
if(!vis[i])prime[++tot]=i;
for(int j=;j<=tot&&(k=i*prime[j])<=n;++j)
{
vis[k]=;if(i%prime[j]==)break;
}
}
dp[][]=;
for(int i=;i<=tot;++i)
{
for(int j=;j<=n;++j)dp[i][j]=dp[i-][j];
for(int j=prime[i];j<=n;j*=prime[i])
for(int k=;k+j<=n;++k)
dp[i][j+k]+=dp[i-][k];
}
long long ans=;
for(int i=;i<=n;++i)ans+=dp[tot][i];
cout<<ans;
return ;
}

SCOI2009游戏 (数论+dp)的更多相关文章

  1. Luogu P4161 [SCOI2009]游戏 数论+DP

    ywy神犇太巨辣!!一下就明白了!! 题意:求$lcm(a_1,a_2,...,a_k)$的种类,其中$\Sigma\space a_i <=n$,$a_i$相当于环长 此处的$DP$,相当于是 ...

  2. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  3. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  4. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  5. bzoj1025 [SCOI2009]游戏——因数DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4 ...

  6. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  7. SCOI2009游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] ...

  8. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  9. 【BZOJ1025】[SCOI2009]游戏(动态规划)

    [BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...

  10. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

随机推荐

  1. K8S、云计算、大数据、编程语言

    云计算.大数据.编程语言学习指南下载,100+技术课程免费学!这份诚意满满的新年技术大礼包,你Get了吗?-云栖社区-阿里云https://yq.aliyun.com/articles/691028 ...

  2. jvisualvm远程监控 visualgc插件 不受此jvm支持问题

    https://yq.aliyun.com/ziliao/478212 1.修改远程服务器上java设置 vi $JAVA_HOME/jre/lib/security/java.policy    在 ...

  3. package-lock.json和package.json的作用

    转自:https://www.cnblogs.com/cangqinglang/p/8336754.html package-lock.json的作用就是锁定安装依赖时包的版本,并且需要上传到git, ...

  4. PHP中对象的深拷贝与浅拷贝

    先说一下深拷贝和浅拷贝通俗理解 深拷贝:赋值时值完全复制,完全的copy,对其中一个作出改变,不会影响另一个 浅拷贝:赋值时,引用赋值,相当于取了一个别名.对其中一个修改,会影响另一个 PHP中, = ...

  5. 并发包 concurrent(一) Atomic

    1:基础概念 悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁.传 ...

  6. 【学亮IT手记】jQuery text()/html()回调函数实例

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...

  7. Day 5-<补充> 类的的继承和查找顺序

    类的继承于查找顺序: 在py2中,不继承object的类为经典类,经典类继承查找:深度优先. 在py3中,默认继承object,所以python3中都是新式类,新式类的继承查找:广度优先. 类的特殊属 ...

  8. rpm和yum

    RMP(红帽软件包管理器) RPM有点像Windows系统中的控制面板,会建立统一的数据库文件,详细记录软件信息并能够自动分析依赖关系. YUM(软件仓库)

  9. 转 My97日历控件常用功能记录

    My97相信大家都不陌生,应该是我所见过的最强大的一个日历控件了,最近的项目中也比较多地用到了此控件,而且项目中经常会有不同时间范围的需求,在此列出一些比较常用的日期范围格式的设置,尽管在My97的官 ...

  10. onbeforeunload事件两种写法及效果

    在符合W3C标准的浏览器里,可以使用addEventListener方法来添加事件. 当不需要为一个事件添加多个处理函数的时候,可以简单的使用onXXX=function(){}的方式来添加事件处理函 ...