CF1096F Inversion Expectation
逆序对分三类:
1.已知对已知
树状数组直接处理即可
2.未知对未知
设未知数的位置数为\(m\),则有\(m(m-1)/2\)个数对。一个数对是逆序对的期望是\(0.5\)(一个逆序对与一个非逆序对对应)。因为期望的可加性,总期望为\(m(m-1)/4\)
3.已知对未知
处理出对于每个数\(i\),比它大且可填入原序列的数的个数\(a_i\)和比它小且可填入原序列的数的个数\(b_i\)
如果未知数在已知数\(i\)的左边,期望为\(a_i/m\),否则为\(b_i/m\),全加起来就行了
代码:
#include <bits/stdc++.h>
#define mod 998244353ll
#define ll long long
#define rep(i,x,y) for(i=x;i<=y;++i)
#define des(i,x,y) for(i=x;i>=y;--i)
#define rd(x) scanf("%d",&x)
#define N 200005
using namespace std;
int a[N],bg[N],sm[N],n;
ll c[N],t[N];
bool vis[N];
inline ll ksm(ll x,ll y){
ll z=1;
while(y){
if(y&1) (z*=x)%=mod;
(x*=x)%=mod,y>>=1;
}
return z;
}
inline int lowbit(int x){ return x&(-x);}
inline void add(ll *a,int x,int y){
for(int i=x;i<=n;i+=lowbit(i)) (a[i]+=y)%=mod;
}
inline ll query(ll *a,int x){
ll tmp=0;
for(int i=x;i>0;i-=lowbit(i))
(tmp+=a[i])%=mod;
return tmp;
}
int main(){
int i,tot=0;
ll ans=0,inv;
rd(n);
rep(i,1,n){
rd(a[i]);
if(a[i]==-1) tot++;
else vis[a[i]]=1;
}
inv=ksm(1ll*tot,mod-2);
(ans+=1ll*tot*(tot-1)%mod*ksm(4ll,mod-2)%mod)%=mod;
bg[n]=0,sm[1]=0;
des(i,n-1,1) bg[i]=bg[i+1]+(!vis[i+1]);
rep(i,2,n) sm[i]=sm[i-1]+(!vis[i-1]);
rep(i,1,n){
if(~a[i]) add(c,a[i],sm[a[i]]*inv%mod);
else (ans+=query(c,n))%=mod;
}
memset(c,0,sizeof(c));
des(i,n,1){
if(~a[i]){
(ans+=query(t,a[i]))%=mod;
add(t,a[i],1),add(c,a[i],bg[a[i]]*inv%mod);
} else (ans+=query(c,n))%=mod;
}
printf("%I64d",ans);
}
CF1096F Inversion Expectation的更多相关文章
- CF1096.F. Inversion Expectation(树状数组)
A permutation of size n is an array of size n such that each integer from 1 to n occurs exactly once ...
- Codeforces Educational Codeforces Round 57 题解
传送门 Div 2的比赛,前四题还有那么多人过,应该是SB题,就不讲了. 这场比赛一堆计数题,很舒服.(虽然我没打) E. The Top Scorer 其实这题也不难,不知道为什么这么少人过. 考虑 ...
- Educational Codeforces Round 57题解
A.Find Divisible 沙比题 显然l和2*l可以直接满足条件. 代码 #include<iostream> #include<cctype> #include< ...
- Codeforces Educational Round 57
这场出题人好像特别喜欢998244353,每个题里都放一个 A.Find Divisible 考察选手对输入输出的掌握 输出l 2*l即可(为啥你要放这个题,凑字数吗 #include<cstd ...
- Educational Codeforces Round 57 Solution
A. Find Divisible 签到. #include <bits/stdc++.h> using namespace std; int t, l, r; int main() { ...
- Educational Codeforces Round 57 (Rated for Div. 2) ABCDEF题解
题目总链接:https://codeforces.com/contest/1096 A. Find Divisible 题意: 给出l,r,在[l,r]里面找两个数x,y,使得y%x==0,保证有解. ...
- 数据结构作业——expectation(树形dp+dfs)
expectation Description 给出一棵带权值的树,我们假设从某个节点出发,到目标节点的时间为两个节点之间的最短路.由于出发节点不好选取,所以选在每个节点都有一定的概率,现在我们要求从 ...
- HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number ...
- 控制反转Inversion of Control (IoC) 与 依赖注入Dependency Injection (DI)
控制反转和依赖注入 控制反转和依赖注入是两个密不可分的方法用来分离你应用程序中的依赖性.控制反转Inversion of Control (IoC) 意味着一个对象不会新创建一个对象并依赖着它来完成工 ...
随机推荐
- [官网]Red Hat Enterprise Linux Release Dates
Red Hat Enterprise Linux Release Dates https://access.redhat.com/articles/3078 The tables below list ...
- 重构客户注册-基于ActiveMQ实现短信验证码生产者
重构目标:将bos_fore项目中的CustomerAction作为短信消息生产者,将消息发给ActiveMQ,创建一个单独的SMS项目,作为短信息的消费者,从ActiveMQ获取短信消息,调用第三方 ...
- Angular 双向数据绑定
<!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...
- css3的clip-path方法剪裁实现
本例讲解如何通过clip-path把一个div(元素,可以是图片等)裁切成不同的形状,这里以一个div为例宽高均为300px 注意:不支持IE和Firefox,支持webkit浏览器,在现代浏览器中需 ...
- 区分Python中的可变对象和不可变对象
参考: https://www.cnblogs.com/sun-haiyu/p/7096918.html """不过注意函数传参既不是传值也不是传引用,正确的叫法是传对象 ...
- hive自定义函数
- python(Django之组合搜索、JSONP、XSS过滤 )
一.组合搜索 二.jsonp 三.xss过滤 一.组合搜索 首先,我们在做一个门户网站的时候,前端肯定是要进行搜索的,但是如果搜索的类型比较多的话,怎么做才能一目了然的,这样就引出了组合搜索的这个案例 ...
- 【转】MySQL sql_mode 说明(及处理一起 sql_mode 引发的问题)
1. MySQL 莫名变成了 Strict SQL Mode 最近测试组那边反应数据库部分写入失败,app层提示是插入成功,但表里面里面没有产生数据,而两个写入操作的另外一个表有数据.因为 inser ...
- Delphi (Library Path Browsing Path)
首先要明白的一个概念是dcu文件 *.dcu是*.pas的编译后单元文件(Delphi Compiled Unit), 编译器把它和库文件连接起来就构成了可执行文件*.exe 或*.dll等,相当于C ...
- Wpf ViewModel中 ObservableCollection不支持从调度程序线程以外的线程对其 SourceCollection 进行的更改
Wpf中ViewModel类里面经常会需要用到ObservableCollection来管理列表数据,在做异步通信的时候也会碰到“不支持从调度程序线程以外的线程对其 SourceCollection ...