这种位操作不大可能分析出来,先看代码再分析。

代码

使用条件:\(k>0\)

void solve(int n,int k)
{
    for(int comb = (1 << k) - 1; comb < (1 << n);)
    {
        // ...
        int x = comb & -comb, y = comb + x;
        comb = (((comb & ~y) / x ) >> 1) | y;
    }
}

证明

\[
\begin{array}{}
首先是辅助变量x,y\\
x \rightarrow comb最低位\\
y \rightarrow comb的倒数第一段1取0,该1段前一个位置的0取1\\
设上述y改变的部分为len\\
comb\&\sim y \rightarrow len前取0,len中取1,len后取0\\
(comb\&\sim y)/x \rightarrow 长度为len的全1串\\
((comb \& \sim y) / x ) >> 1 \rightarrow 右移1位,len-1\\
综上\\
(((comb \& \sim y) / x ) >> 1) | y \rightarrow 把comb的len的前一个位置的0取1,末尾添上len-1个1
\end{array}
\]

然后这就是不重不漏的枚举。
所以时间复杂度\(O\left(\binom{n}{k}\right)\)

枚举大小为k的子集的更多相关文章

  1. 关于“枚举{0,1,...,n-1}所包含的所有大小为k的子集”的理解

    前言 今天整理以前的竞赛笔记时,发现了当时写的一个模板: 枚举{0,1,-,n-1}所包含的所有大小为k的子集: int comb = (1 << k) - 1; while (comb ...

  2. 【TRICK】[0,n)中所有大小为k的子集的方法

    << k) - ; <<n)) { int x = comb & -comb, y = comb + x; comb = (((comb & ~y)/x)> ...

  3. N个整数(数的大小为0-255)的序列,把它们加密为K个整数(数的大小为0-255).再将K个整数顺序随机打乱,使得可以从这乱序的K个整数中解码出原序列。设计加密解密算法,且要求K<=15*N.

    N个整数(数的大小为0-255)的序列,把它们加密为K个整数(数的大小为0-255).再将K个整数顺序随机打乱,使得可以从这乱序的K个整数中解码出原序列.设计加密解密算法,且要求K<=15*N. ...

  4. 在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’;输出这个数组中的所有元素。

    //在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’:输出这个数组中的所有元素. char [][]y=new char [10][10 ...

  5. 一个大小为N的数组,里面是N个整数,怎样去除重复的数

    题目:一个大小为N的数组,里面是N个整数,怎样去除重复的数字: 要求时间复杂度为O(n),空间复杂度为O(1). 需要除掉重复的整数的数组,注意这里我没有处理负数情况,其实负数情况只要先用0快排分一下 ...

  6. 给定数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X

    题目:给定数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X 思路一: 1,先采用归并排序对这个数组排序, 2,然后寻找相邻<k,i>的两数之和sum,找到恰好sum>x的 ...

  7. Linux显示指定区块大小为1024字节

    Linux显示指定区块大小为1024字节 youhaidong@youhaidong-ThinkPad-Edge-E545:~$ df -k 文件系统 1K-blocks 已用 可用 已用% 挂载点 ...

  8. 为什么HashMap初始大小为16,为什么加载因子大小为0.75,这两个值的选取有什么特点?

    先看HashMap的定义: public class HashMap<K,V>extends AbstractMap<K,V>implements Map<K,V> ...

  9. 在主方法中定义一个大小为50的一维整型数组,数组i名为x,数组中存放着{1,3,5,…,99}输出这个数组中的所有元素,每输出十个换一行

    package hanqi; import java.util.Scanner; public class Test7 { public static void main(String[] args) ...

随机推荐

  1. Java注解 框架开发之Java注解的妙用

    原文出处: locality 注解的好处: 1.能够读懂别人写的代码,特别是框架相关的代码. 2.本来可能需要很多配置文件,需要很多逻辑才能实现的内容,就可以使用一个或者多个注解来替代,这样就使得编程 ...

  2. LeetCode--066--加一

    问题描述: 给定一个非负整数组成的非空数组,在该数的基础上加一,返回一个新的数组. 最高位数字存放在数组的首位, 数组中每个元素只存储一个数字. 你可以假设除了整数 0 之外,这个整数不会以零开头. ...

  3. 2018焦作网络赛Give Candies

    一开始忽略了欧拉定理指数部分是modphi(n-1)没有memset,减法后面没加0:

  4. Mr. Kitayuta vs. Bamboos CodeForces - 505E (堆,二分答案)

    大意: 给定$n$棵竹子, 每棵竹子初始$h_i$, 每天结束时长$a_i$, 共$m$天, 每天可以任选$k$棵竹子砍掉$p$, 若不足$p$则变为0, 求$m$天中竹子最大值的最小值 先二分答案转 ...

  5. os.mkdir()和os.path.join()的区别

    os.path.join("D:\","test.txt")结果是D:\test.txt,并且在我们往里面写东西,然后保存,在这个目录下会生成这个文件,但是如果 ...

  6. POJ-3083 Children of the Candy Corn (BFS+DFS)

    Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and mus ...

  7. ASP.NET的内置对象 —— Request 对象

    Request 对象最大的用途在于提交表单信息. (可获取页面间传递的值.客户端的 IP 地址等) 3.2.2 获取页面间传送的值 获取页面传送参数值是 Request 对象最广泛的应用之一. ASP ...

  8. EBS管理员为供应商创建新联系人流程

    管理员为供应商创建新联系人流程 /oracle/apps/pos/supplier/webui/ByrAddCntctPG oracle.apps.pos.supplier.webui.ByrAddC ...

  9. spring的FactoryBean

    (以下内容翻译自spring/docs/3.2.18.RELEASE) 为具有工厂属性的对象实现FactoryBean接口. FactoryBean接口是spring IoC 容器实例化逻辑的一点补充 ...

  10. POJ 3013最短路变形....

    DES:计算输的最小费用.如果不能构成树.输出-1.每条边的费用=所有的子节点权值*这条边的权值.计算第二组样例可以知道树的费用是所有的节点的权值*到根节点的最短路径的长度. 用dij的邻接矩阵形式直 ...