这种位操作不大可能分析出来,先看代码再分析。

代码

使用条件:\(k>0\)

void solve(int n,int k)
{
    for(int comb = (1 << k) - 1; comb < (1 << n);)
    {
        // ...
        int x = comb & -comb, y = comb + x;
        comb = (((comb & ~y) / x ) >> 1) | y;
    }
}

证明

\[
\begin{array}{}
首先是辅助变量x,y\\
x \rightarrow comb最低位\\
y \rightarrow comb的倒数第一段1取0,该1段前一个位置的0取1\\
设上述y改变的部分为len\\
comb\&\sim y \rightarrow len前取0,len中取1,len后取0\\
(comb\&\sim y)/x \rightarrow 长度为len的全1串\\
((comb \& \sim y) / x ) >> 1 \rightarrow 右移1位,len-1\\
综上\\
(((comb \& \sim y) / x ) >> 1) | y \rightarrow 把comb的len的前一个位置的0取1,末尾添上len-1个1
\end{array}
\]

然后这就是不重不漏的枚举。
所以时间复杂度\(O\left(\binom{n}{k}\right)\)

枚举大小为k的子集的更多相关文章

  1. 关于“枚举{0,1,...,n-1}所包含的所有大小为k的子集”的理解

    前言 今天整理以前的竞赛笔记时,发现了当时写的一个模板: 枚举{0,1,-,n-1}所包含的所有大小为k的子集: int comb = (1 << k) - 1; while (comb ...

  2. 【TRICK】[0,n)中所有大小为k的子集的方法

    << k) - ; <<n)) { int x = comb & -comb, y = comb + x; comb = (((comb & ~y)/x)> ...

  3. N个整数(数的大小为0-255)的序列,把它们加密为K个整数(数的大小为0-255).再将K个整数顺序随机打乱,使得可以从这乱序的K个整数中解码出原序列。设计加密解密算法,且要求K<=15*N.

    N个整数(数的大小为0-255)的序列,把它们加密为K个整数(数的大小为0-255).再将K个整数顺序随机打乱,使得可以从这乱序的K个整数中解码出原序列.设计加密解密算法,且要求K<=15*N. ...

  4. 在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’;输出这个数组中的所有元素。

    //在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’:输出这个数组中的所有元素. char [][]y=new char [10][10 ...

  5. 一个大小为N的数组,里面是N个整数,怎样去除重复的数

    题目:一个大小为N的数组,里面是N个整数,怎样去除重复的数字: 要求时间复杂度为O(n),空间复杂度为O(1). 需要除掉重复的整数的数组,注意这里我没有处理负数情况,其实负数情况只要先用0快排分一下 ...

  6. 给定数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X

    题目:给定数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X 思路一: 1,先采用归并排序对这个数组排序, 2,然后寻找相邻<k,i>的两数之和sum,找到恰好sum>x的 ...

  7. Linux显示指定区块大小为1024字节

    Linux显示指定区块大小为1024字节 youhaidong@youhaidong-ThinkPad-Edge-E545:~$ df -k 文件系统 1K-blocks 已用 可用 已用% 挂载点 ...

  8. 为什么HashMap初始大小为16,为什么加载因子大小为0.75,这两个值的选取有什么特点?

    先看HashMap的定义: public class HashMap<K,V>extends AbstractMap<K,V>implements Map<K,V> ...

  9. 在主方法中定义一个大小为50的一维整型数组,数组i名为x,数组中存放着{1,3,5,…,99}输出这个数组中的所有元素,每输出十个换一行

    package hanqi; import java.util.Scanner; public class Test7 { public static void main(String[] args) ...

随机推荐

  1. 微服务设计 - api版本控制

    要描述了几种API版本控制的方法.用户可以查询原始的API,或者添加定制的头文件来接收特定的版本.如果应用程序收到一个重大修订,将URI修改为V2.在进行迭代改进时,将创建与更改日期相一致的端点,并允 ...

  2. spring boot 2.0 + 静态资源被拦截,怎么办?

    问题描述:使用springboot 2.0后,按照springboot 1.5版本(以下简称旧版)的方式去配置项目.结果发现静态资源访问不到了,本文对此情况分析.处理 项目结构: 直接上图 如果是在旧 ...

  3. python打印ms

    ct打印的是时间戳,时间戳的小数点后前三位为ms  eg:1555644362.055328   ms = 055 import time ct = time.time() local_time = ...

  4. 20170801xlVBA含有公式出现弹窗合并

    Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long) Public Sub GatherD ...

  5. Windows 10 设置 Java 环境变量

    首先你需要在我的电脑中打开,找到环境变量属性. 找到环境变量属性 找到环境变量属性后单击将会看到下面的设置界面. 在这个界面中设置高级系统设置. 环境变量 在弹出的界面中选择设置环境变量. 系统变量 ...

  6. Confluence 6 为空间赋予公共访问

    希望为一个 Confluence 空间赋予公共访问权限,你必须为匿名用户赋予下面的权限: 在全站启用 可以使用(can use)权限,如上面描述的的. 相关的 空间权限.如果你希望你的一个空间可以公共 ...

  7. 50 Jquery 库

    一.概念: 1.jquery 的选择器和ccs 相同 2.jquery对象, dom对象的集合,类似python中list,有自己的各种方法和属性 // [dom1,dom2,.....] 3.方便之 ...

  8. Sonya and Ice Cream CodeForces - 1004E 树的直径, 贪心

    题目链接 set维护最小值贪心, 刚开始用树的直径+单调队列没调出来... #include <iostream>#include <cstdio> #include < ...

  9. MQTT协议QoS服务质量 (Quality of Service 0, 1 & 2)概念学习

    什么是 QoS ? QoS (Quality of Service) 是发送者和接收者之间,对于消息传递的可靠程度的协商. QoS 的设计是 MQTT 协议里的重点.作为专为物联网场景设计的协议,MQ ...

  10. zabbix3.0.4 配置邮件报警

    试验环境: LAMP环境 (LNMP环境已经成功了,为了避免干扰,我另一台LAMP主机) ### 我在做实验之前,作了时间同步,不知道这个有木有影响,一起说一下吧! yum -y install nt ...