POJ 1269 - Intersecting Lines - [平面几何模板题]
题目链接:http://poj.org/problem?id=1269
Time Limit: 1000MS Memory Limit: 10000K
Description
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000.
Input
Output
Sample Input
5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
题意:
给出四个点的坐标,分别用来表示两条直线,求两条直线的关系是共线还是平行还是相交,若是相交则给出交点坐标(保留小数点后两位)。
题解:
直接套用模板中的点到直线距离以及求直线交点的函数模板即可。
AC代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
//--------------------------------------计算几何模板 - st-------------------------------------- const double eps = 1e-;
const double M_PI = 3.14159265358979323846; struct Point{
double x,y;
Point(double tx=,double ty=):x(tx),y(ty){}
};
typedef Point Vctor; //向量的加减乘除
Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);}
bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);} struct Line{
Point p;
Vctor v;
Line(Point p=Point(,),Vctor v=Vctor(,)):p(p),v(v){}
Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点
};
struct Circle{
Point c;
double r;
Circle(Point tc=Point(,),double tr=):c(tc),r(tr){}
Point point(double a){return Point( c.x + cos(a)*r , c.y + sin(a)*r);}
}; int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return (x<)?(-):();
}
bool operator == (Point A,Point B){return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;} //向量的点积,长度,夹角
double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;}
double Length(Vctor A){return sqrt(Dot(A,A));}
double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));} //叉积,三角形面积
double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;}
double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);} //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
Vctor Rotate(Vctor A,double rad){return Vctor( A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad) );}
Vctor Normal(Vctor A)
{
double L = Length(A);
return Vctor(-A.y/L, A.x/L);
} //直线的交点
Point getLineIntersection(Line L1,Line L2)
{
Vctor u = L1.p-L2.p;
double t = Cross(L2.v,u)/Cross(L1.v,L2.v);
return L1.p + L1.v*t;
} //点到直线的距离
double DistanceToLine(Point P,Line L)
{
return fabs(Cross(P-L.p,L.v))/Length(L.v);
} //--------------------------------------计算几何模板 - ed--------------------------------------
double x[],y[];
Line L1,L2;
int CheckTwoLines(Line L1,Line L2)//1-共线,2-平行,3-相交
{
if(dcmp( L1.v.x * L2.v.y - L2.v.x * L1.v.y ) == ) //两直线的方向向量平行
{
if( DistanceToLine(L1.p,L2) < eps ) //直线1上的点也在直线2上
return ;
else
return ;
}
else return ;
}
int main()
{
int t;
scanf("%d",&t);
printf("INTERSECTING LINES OUTPUT\n");
while(t--)
{
for(int i=;i<=;i++) scanf("%lf%lf",x+i,y+i);
L1=Line(Point(x[],y[]),Point(x[],y[])-Point(x[],y[]));
L2=Line(Point(x[],y[]),Point(x[],y[])-Point(x[],y[])); int relation=CheckTwoLines(L1,L2);
if(relation==)
printf("LINE\n");
else if(relation==)
printf("NONE\n");
else
{
Point ans=getLineIntersection(L1,L2);
printf("POINT %.2f %.2f\n",ans.x,ans.y);
//此处使用G++时用 %.2f 输出,使用C++时用 %.2lf 输出
}
}
printf("END OF OUTPUT\n");
}
POJ 1269 - Intersecting Lines - [平面几何模板题]的更多相关文章
- POJ 1269 Intersecting Lines(判断两直线位置关系)
题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...
- POJ 1269 Intersecting Lines(线段相交,水题)
id=1269" rel="nofollow">Intersecting Lines 大意:给你两条直线的坐标,推断两条直线是否共线.平行.相交.若相交.求出交点. ...
- ●POJ 1269 Intersecting Lines
题链: http://poj.org/problem?id=1269 题解: 计算几何,直线交点 模板题,试了一下直线的向量参数方程求交点的方法. (方法详见<算法竞赛入门经典——训练指南> ...
- poj 1269 Intersecting Lines——叉积求直线交点坐标
题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...
- poj 1269 Intersecting Lines
题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...
- 判断两条直线的位置关系 POJ 1269 Intersecting Lines
两条直线可能有三种关系:1.共线 2.平行(不包括共线) 3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...
- POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道
rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...
- POJ 1269 Intersecting Lines 直线交
不知道谁转的计算几何题集里面有这个题...标题还写的是基本线段求交... 结果题都没看就直接敲了个线段交...各种姿势WA一遍以后发现题意根本不是线段交而是直线交...白改了那个模板... 乱发文的同 ...
- POJ 1269 Intersecting Lines (判断直线位置关系)
题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...
随机推荐
- 基于NDK的Android防破解& Android防破解 【转载】
两篇防破解文章转载 基于NDK的Android防破解:http://blog.csdn.net/bugrunner/article/details/8634585 Android防破解:http:// ...
- 如何使用Maven scope
maven 有6个scope类型,下面简单总结备忘下 <dependency> <groupId>javax.servlet</groupId> <artif ...
- My Apple Developer Library Catalog
Objective-C & Memory Management:Programming with Objective-CConcepts in Objective-C ProgrammingM ...
- 【Python】TF环境
1.pip show pip 2.python -m pip install --upgrade pip 3.conda list 4.pip install tensorflow 5.pip ins ...
- CentOS6.5下安装Oracle11g
一.安装前系统准备 1. 修改主机名 #sed -i "s/HOSTNAME=localhost.localdomain/HOSTNAME=oracledb.01/" /etc/s ...
- Kafka 0.11客户端集群管理工具AdminClient
很多用户都有直接使用程序API操作Kafka集群的需求.在0.11版本之前,kafka的服务器端代码(即添加kafka_2.**依赖)提供了AdminClient和AdminUtils可以提供部分的集 ...
- link常用的作用
1 引入样式 2设置网页标题上面图标
- Linux下的XAMPP基本配置技巧(设置虚拟主机、添加FTP账户等)
xampp安装好之后就只有一个默认站点及一个默认nobody的ftp账户,这显然不符合我们平时的需求了,那么下面就来讲一下如何设置并管理多个虚拟主机及ftp账户了,至于xampp的安装不在此讨论范围, ...
- iptables 指令语法
iptables 指令 语法: iptables [-t table] command [match] [-j target/jump] -t 参数用来指定规则表,内建的规则表有三个,分别是:nat. ...
- 响应式web设计之@media
两种方式,一种是直接在link中判断设备的尺寸,然后引用不同的css文件: 1 <link rel="stylesheet" type="text/css" ...