Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].

The objective of the game is to end with the most stones.  The total number of stones is odd, so there are no ties.

Alex and Lee take turns, with Alex starting first.  Each turn, a player takes the entire pile of stones from either the beginning or the end of the row.  This continues until there are no more piles left, at which point the person with the most stones wins.

Assuming Alex and Lee play optimally, return True if and only if Alex wins the game.

Example 1:

Input: [5,3,4,5]
Output: true
Explanation:
Alex starts first, and can only take the first 5 or the last 5.
Say he takes the first 5, so that the row becomes [3, 4, 5].
If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10 points.
If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with 9 points.
This demonstrated that taking the first 5 was a winning move for Alex, so we return true.

Note:

  1. 2 <= piles.length <= 500
  2. piles.length is even.
  3. 1 <= piles[i] <= 500
  4. sum(piles) is odd.

这个题目思路跟[LintCode] 395. Coins in a Line 2_Medium tag: Dynamic Programming, 博弈很像, 只不过这里是利用 区间Dynamic Programing的方法,所以只用一维的dp已经不够了, 另外初始化的时候我们不直接用for loop, 而是用类似于dfs recursive的方法去将初始化放在helper fuction里面. 另外得到的

动态方程式为  A[i][j] = max( piles[i] + min(A[i+1][j-1] + A[i+2][j]) , piles[j] + min(A[i+1][j-1], A[i][j-2]) )

init;

A[i][i] = piles[i]

A[i][i+1] = max(piles[i], piles[i+1])

1. Constraints

1) size [2,500], even number

2) element [1,50], integer

3) sum(piles) is odd, no ties

2. Ideas

Dynamic Programming   ,     T: O(n^2)     S; O(n^2)

3. Code

 class Solution:
def stoneGame(self, piles):
n = len(piles)
dp, flag = [[0]*n for _ in range(n)], [[0]*n for _ in range(n)]
def helper(left, right):
if flag[left][right]:
return dp[left][right]
if left == right:
dp[left][right] = piles[left]
elif left + 1 = right:
dp[left][right] = max(piles[left], piles[right])
elif left < right: # left > right, init 0
value_l = piles[left] + min(helper(left+2, right), helper(left + 1, right -1))
value_r = piles[right] + min(helper(left+1, right-1), helper(left, right - 2))
dp[left][right] = max(value_l, value_r)
flag[left][right] = 1
return dp[left][right]
return helper(0, n-1) > sum(piles)//2

4. Test cases

[5,3,4,5]
 

[LeetCode] 877. Stone Game == [LintCode] 396. Coins in a Line 3_hard tag: 区间Dynamic Programming, 博弈的更多相关文章

  1. [LeetCode] 312. Burst Balloons_hard tag: 区间Dynamic Programming

    Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by ...

  2. [LintCode] 395. Coins in a Line 2_Medium tag: Dynamic Programming, 博弈

    Description There are n coins with different value in a line. Two players take turns to take one or ...

  3. [LeetCode] questions conclusion_ Dynamic Programming

    Questions: [LeetCode] 198. House Robber _Easy tag: Dynamic Programming [LeetCode] 221. Maximal Squar ...

  4. [LeetCode] 877. Stone Game 石子游戏

    Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, ...

  5. lintcode 394. Coins in a Line 、leetcode 292. Nim Game 、lintcode 395. Coins in a Line II

    变型:如果是最后拿走所有石子那个人输,则f[0] = true 394. Coins in a Line dp[n]表示n个石子,先手的人,是必胜还是必输.拿1个石子,2个石子之后都是必胜,则当前必败 ...

  6. [LintCode] 394. Coins in a Line_ Medium tag:Dynamic Programming_博弈

    Description There are n coins in a line. Two players take turns to take one or two coins from right ...

  7. 396. Coins in a Line III

    刷 July-31-2019 换成只能从左边或者右边拿.这个确实和Coins in a Line II有关系. 和上面思路一致,也是MinMax思路,只不过是从左边和右边选,相应对方也是这样. pub ...

  8. LeetCode 877. Stone Game

    原题链接在这里:https://leetcode.com/problems/stone-game/ 题目: Alex and Lee play a game with piles of stones. ...

  9. leetcode 877. Stone Game 详解 -——动态规划

    原博客地址 https://blog.csdn.net/androidchanhao/article/details/81271077 题目链接 https://leetcode.com/proble ...

随机推荐

  1. 为什么有这么多 Python版本

    Python是出类拔萃的 然而,这是一句非常模棱两可的话.这里的"Python"到底指的是什么? 是Python的抽象接口吗?是Python的通用实现CPython吗(不要把CPy ...

  2. RAC迁移至单机考虑几大因素

    数据库迁移几大因素 1. 停机时间 2. 源端,目标端 操作系统平台,版本,对应的数据库版本 3. 数据量 4. 外界因素,存储空间,网络等

  3. nginx作为下载文件服务器

    1.前言 当我们希望分享自己的文件时,有多种方式,局域网可以采用共享,rtx传输,qq传输,发送到邮箱,直接u盘拷贝等等.但最简单的就是开启本地服务器,其他电脑通过网页的方式直接下载,这里介绍使用ng ...

  4. exml自动加载图片

    常规H5和微信小游戏同样有效 一.exml自动加载图片 有两张图片 图片未放入defatult.res.json的资源组里,未预先加载包含2张图片的资源组,仅仅在default.res.json里有图 ...

  5. Spring Cloud Eureka 服务消费者

    参考<spring cloud 微服务实战> 现在已经构建了服务注册中心和服务提供中心,下面就来构建服务消费者: 服务消费者主要完成:发现服务和消费服务.其中服务的发现主要由Eureka的 ...

  6. Adobe edge animate制作HTML5动画可视化工具(一)

    Edge Animate for mac是Adobe最新出品的制作HTML5动画的可视化工具,简单的可以理解为HTML5版本的Flash Pro.在之后的文章中,我会逐一的介绍这款新的HTML5动画神 ...

  7. Css控制网页变灰

    兼容IE chrome Firefox..... html{ filter:grayscale(%); -moz-filter:grayscale(%); -o-filter:grayscale(%) ...

  8. iOS - UIEvent事件及UIResponder响应者

    在iOS中不是所有的对象都能处理事件,只有继承了UIResponder的对象才能接收并处理事件,称之为响应者对象: UIApplication.UIViewController.UIView都继承自U ...

  9. numpy协方差矩阵numpy.cov

    numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)[source] Estim ...

  10. iOS SwiftMonkey 随机暴力测试

    参考源文章 https://github.com/zalando/SwiftMonkey https://kemchenj.github.io/2017/03/16/2017-03-16/ 简介 这个 ...