splay板子
1, splay的一些基本操作.
- 使用前要插入$-INF,+INF$保证每个点的前驱后继存在.
- $get$函数在$x$存在时, 调用后, 根为$x$, 否则根为$x$的前驱或后继
const int N = 1e6+10;
int n, tot, rt, sz;
struct {
int cnt,sz,fa,ch[2],v;
} tr[N];
void pu(int x) {
tr[x].sz=tr[tr[x].ch[0]].sz+tr[tr[x].ch[1]].sz+tr[x].cnt;
}
void rot(int x) {
int y=tr[x].fa,z=tr[y].fa;
int f=tr[y].ch[1]==x;
tr[z].ch[tr[z].ch[1]==y]=x,tr[x].fa=z;
tr[y].ch[f]=tr[x].ch[f^1],tr[tr[x].ch[f^1]].fa=y;
tr[x].ch[f^1]=y,tr[y].fa=x,pu(y);
}
void splay(int x, int s=0) {
for (int y; y=tr[x].fa,y!=s; rot(x)) if (tr[y].fa!=s) {
rot((tr[y].ch[0]==x)==(tr[tr[y].fa].ch[0]==y)?y:x);
}
if (!s) rt=x;
}
void get(int x) {
int cur=rt;
while (x!=tr[cur].v&&tr[cur].ch[x>tr[cur].v]) cur=tr[cur].ch[x>tr[cur].v];
splay(cur);
}
void insert(int x) {
int cur=rt,p=0;
while (cur&&x!=tr[cur].v) p=cur,cur=tr[cur].ch[x>tr[cur].v];
if (cur) ++tr[cur].cnt;
else {
cur=++tot;
if (p) tr[p].ch[x>tr[p].v]=cur,tr[cur].fa=p;
tr[cur].v=x,tr[cur].sz=tr[cur].cnt=1;
}
splay(cur);
}
int pre(int x) {
get(x);
if (tr[rt].v<=x) return rt;
int cur=tr[rt].ch[0];
while (tr[cur].ch[1]) cur=tr[cur].ch[1];
return cur;
}
int nxt(int x) {
get(x);
if (tr[rt].v>=x) return rt;
int cur=tr[rt].ch[1];
while (tr[cur].ch[0]) cur=tr[cur].ch[0];
return cur;
}
void erase(int x) {
int s1=pre(x-1),s2=nxt(x+1);
splay(s1),splay(s2,s1);
int &cur=tr[s2].ch[0];
if (tr[cur].cnt>1) --tr[cur].cnt,splay(cur);
else cur=0;
}
2, splay插入区间,区间翻转等操作.
这时候splay维护的是每个下标对应的权值, 下标通过第k大来查询
- 使用前要调用$build(a,0,rt,1,2);$
const int N = 1e6+10;
int n, rt, tot;
int a[N];
struct _ {
int sz,v,ch[2],fa,rev;
} tr[N];
void pu(int o) {
tr[o].sz=tr[tr[o].ch[0]].sz+tr[tr[o].ch[1]].sz+1;
}
void pd(int o) {
if (tr[o].rev) {
swap(tr[o].ch[0],tr[o].ch[1]);
tr[tr[o].ch[0]].rev^=1;
tr[tr[o].ch[1]].rev^=1;
tr[o].rev=0;
}
}
void rot(int x) {
int y=tr[x].fa,z=tr[y].fa;
int f=tr[y].ch[1]==x;
tr[z].ch[tr[z].ch[1]==y]=x,tr[x].fa=z;
tr[y].ch[f]=tr[x].ch[f^1],tr[tr[x].ch[f^1]].fa=y;
tr[x].ch[f^1]=y,tr[y].fa=x,pu(y);
}
void splay(int x, int s=0) {
for (int y; y=tr[x].fa,y!=s; rot(x)) if (tr[y].fa!=s) {
rot((tr[y].ch[0]==x)==(tr[tr[y].fa].ch[0]==y)?y:x);
}
if (!s) rt=x;
}
int find(int x, int k) {
pd(x); int s=tr[tr[x].ch[0]].sz;
if (k==s+1) return x;
if (k<=s) return find(tr[x].ch[0],k);
return find(tr[x].ch[1],k-s-1);
}
void build(int *a, int f, int &o, int l, int r) {
if (l>r) return;
o = ++tot;
tr[o].v = a[mid], tr[o].fa = f;
build(s,o,tr[o].ch[0],l,mid-1);
build(s,o,tr[o].ch[1],mid+1,r);
pu(o);
}
void ins(int x, int n) {
build(a,0,p,1,n);
int s1=find(rt,x-1), s2=find(rt,x);
splay(s1),splay(s2,s1);
tr[s2].ch[0]=p,tr[p].fa=s2;
pu(p),pu(s2);
}
void del(int x, int n) {
int s1=find(rt,x-1), s2=find(rt,x+n);
splay(s1),splay(s2,s1);
tr[s2].ch[0]=0;
pu(s1),pu(s2);
}
void reverse(int x, int n) {
int s1=find(rt,x-1), s2=find(rt,x+n);
splay(s1),splay(s2,s1);
tr[tr[s2].ch[0]].rev^=1;
}
splay板子的更多相关文章
- [bzoj] 1588 营业额统计 || Splay板子题
原题 给出一个n个数的数列ai ,对于第i个元素ai定义\(fi=min(|ai-aj|) (1<=j<i)\),f1=a1,求\(/sumfi\) Splay板子题. Splay讲解:h ...
- POJ - 3481 splay板子
Double Queue 默写splay板子 很多细节问题... #include<cstdio> #include<iostream> using namespace std ...
- 个人整理的数组splay板子,指针的写的太丑了就不放了。。
splay的板子.. 由于被LCT榨干了..所以昨天去学了数组版的splay,现在整理一下板子.. 以BZOJ3224和3223为例题..暂时只有这些,序列的话等有时间把维修序列给弄上来!! BZOJ ...
- bzoj3224 splay板子
开始学习新知识:splay——tree 是个板子题,学习splay可以看博客 https://blog.csdn.net/Clove_unique/article/details/50630280 # ...
- BZOJ 3224 Tyvj 1728 普通平衡树 | Splay 板子+SPlay详细讲解
下面给出Splay的实现方法(复杂度证明什么的知道是 nlogn 就可以啦) 首先对于一颗可爱的二叉查找树,是不能保证最坏nlogn的复杂度(可以想象把一个升序序列插入) (二叉查找树保证左子树元素大 ...
- BZOJ[NOI2004]郁闷的出纳员 | Splay板子题
题目: 洛谷也能评测....还有我wa了10多次的记录233 题解: 不要想得太复杂,搞一个全局变量记录一下工资的改变量Delta,这样可以等询问的时候就输出val+Delta,然后插入的时候插入x- ...
- P3369 【模板】普通平衡树(splay)
P3369 [模板]普通平衡树 就是不用treap splay板子,好好背吧TAT #include<iostream> #include<cstdio> #include&l ...
- 【题解】 [HNOI2004]宠物收养场(Splay)
懒得复制,戳我戳我 Solution: \(Splay\)板子,注意交换的地方,然后就是注意不要越界node[x],应该是\(node[now]\),其次就是数组可以开大点 Code: //It is ...
- 【题解】 [HNOI2002]营业额统计 (Splay)
懒得复制,戳我戳我 Solution: \(Splay\)板子题,注意可以选择相等大小 Code: //It is coded by Ning_Mew on 4.10 #include<bits ...
随机推荐
- python 正则表达式匹配ip
>>> re.match(r'^(([1-9]|[1-9]\d|1\d\d|2[0-4]\d|25[0-5])\.){3}([1-9]|[1-9]\d|1\d\d|2[0-4]\d| ...
- linux服务器---代理认证
代理认证 proxy代理服务被广泛的使用,为了安全起见,可以在服务器上增加一层安全认证机制.这里使用htpasswd建立认证账号和密码 1.创建认证账号和密码 [root@localhost wj]# ...
- qmake使用方法(自动生成Makefile文件)
qmake的使用简介 下面是qmake的简单介绍和使用要领,更为详细的信息请参阅手册 qmake的介绍 手写Makefile是比较困难并且容易出错的,尤其是需要给不同的平台和编译器组合写几个Makef ...
- EXKMP
(我和lesphere,reverse研究了这个东西一上午)QAQ kmp是求字符串S的任意前缀与字符串T的最长的相同的前缀和后缀 exkmp第求字符串S的任意后缀与字符串T的最长公共前缀 与kmp相 ...
- Ubuntu 16.04下为Android编译OpenCV 3.2.0 Manager
http://johnhany.net/2016/07/build-opencv-manager-for-android-on-ubuntu/ 最近想在Android上尝试一下SIFT和SURF匹配算 ...
- bzoj1641 / P2888 [USACO07NOV]牛栏Cow Hurdles
P2888 [USACO07NOV]牛栏Cow Hurdles Floyd $n<=300$?果断Floyd 给出核心式,自行体会 $d[i][j]=min(d[i][j],max(d[i][k ...
- 使用CloudFlare 的 PKI 工具集 cfssl 来生成 Certificate Authority (CA) 证书和秘钥文件
要安装kubernetes最新版集群,https://github.com/opsnull/follow-me-install-kubernetes-cluster 这个文档必须要研习一下了. 以下实 ...
- 【第六章】 springboot + 事务
在实际开发中,其实很少会用到事务,一般情况下事务用的比较多的是在金钱计算方面. mybatis与spring集成后,其事务该怎么做?其实很简单,直接在上一节代码的基础上在相应的方法(通常是servic ...
- Unity 之 transform
transform.Translate 1.function Translate (translation : Vector3, relativeTo : Space = Space.Self) : ...
- .Net页面局部更新的思考
最近在修改以前做的模块,添加一个新功能.整理了下才发现重用率很低,大部分的东西还是需要重新写.功能里用到了局部更新,所有整理一下一路来实现局部更新的解决方案及改进. 我接触的项目开发大多是以Asp.n ...