[NOI2012] 骑行川藏 | 求导 二分
一个能看的题解!预备知识只有高中数学的【导数】。不用什么偏导数/拉格朗日乘子法之类的我看不懂的东西( •̀∀•́ )!
如果你不知道什么是导数,可以找本高中数学选修2-2来看一下!看第一章第1、2节就好啦。传送门:选修2-2
感性理解一下这道题:
一开始,我们可以给所有路段随便分配一个速度。
接下来,我们需要在一些路段上耗费一定能量用来提速,以此缩短一定时间。不同路段上,花费单位能量能缩短的时间(简称“性价比”)是不同的,所以如果我们要模拟这个过程,一定是每时每刻都在当前性价比最高的路段上花费能量,直到能量花完为止。(似乎……也可以花费负的能量,增加某路段所需时间,然后把能量用到别的地方去。)
注意到一个性质:随着花费能量增加,性价比会越来越低。
这样的话,只要按照上面这种贪心策略,时时刻刻在性价比最高的路段花费能量(并使它的性价比降低),最后达到最优解时,各路段性价比会一样。
暴力模拟似乎是写不出来的,考虑更正常的做法。
这个性价比是什么呢?如果我们对每段路画出一个\(t-E\)函数图象,表示该路段需要的时间\(t\)与花费的能量\(E\)的函数关系,那么花费一定能量\(e\)之后的“性价比”是什么呢?就是函数图像上横坐标为\(e\)处切线的斜率——导数。
那么最优解就满足——各路段导数一样!
同时,这个公共导数(是负的)绝对值越小(性价比越低),所需能量越多,总时间越小。
于是二分这个导数,求出每段速度,以此求出所需能量,和手里的总能量比较一下,就可以二分得到答案了!
以上是思路。现在开始数学。
要求出每段导数关于\(v\)的关系。
对于一段路来说(方便起见,把\(k\)乘上\(s\)作为新的\(k\),就可以少写一个字母了2333):
\]
\]
那么
\(\frac{dt}{dE}\)
$=\frac{dt}{dv} / \frac{dE}{dv} $
\(= -\frac{s}{v^2} / 2k(v - v')\)
\(= -\frac{s}{2kv^2(v-v')}\)
然后二分公共导数\(x\),对于每段路解方程\(-\frac{s}{2kv^2(v-v')} = x\)(可二分)得到\(v\),进而求出需要的能量。
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#define enter putchar('\n')
#define space putchar(' ')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op == 1) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 10005, INF = 0x3f3f3f3f;
int n;
double E, s[N], k[N], u[N];
double getv(double x, int i){
double l = max(u[i], double(0)), r = 100005, mid;
int cnt = 60;
while(cnt--){
mid = (l + r) / 2;
if(2 * k[i] * x * mid * mid * (mid - u[i]) > -s[i]) l = mid;
else r = mid;
}
mid = (l + r) / 2;
return (l + r) / 2;
}
double calc(double x){
double sum = 0;
for(int i = 1; i <= n; i++){
double v = getv(x, i);
sum += k[i] * (v - u[i]) * (v - u[i]);
}
return sum;
}
int main(){
scanf("%d%lf", &n, &E);
for(int i = 1; i <= n; i++)
scanf("%lf%lf%lf", &s[i], &k[i], &u[i]), k[i] *= s[i];
double l = -INF, r = 0, mid;
int cnt = 100;
while(cnt--){
mid = (l + r) / 2;
if(calc(mid) <= E) l = mid;
else r = mid;
}
mid = (l + r) / 2;
double ans = 0;
for(int i = 1; i <= n; i++)
ans += s[i] / getv(mid, i);
printf("%.10lf\n", ans);
return 0;
}
[NOI2012] 骑行川藏 | 求导 二分的更多相关文章
- bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘
2876: [Noi2012]骑行川藏 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1033 Solved: ...
- 2876: [Noi2012]骑行川藏 - BZOJ
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)
题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...
- bzoj2876 [Noi2012]骑行川藏
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】
题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...
- [NOI2012]骑行川藏——拉格朗日乘子法
原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i( ...
- bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】
详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...
- 【BZOJ】2876: [Noi2012]骑行川藏
题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...
- 题解 洛谷 P2179 【[NOI2012]骑行川藏】
题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{ ...
随机推荐
- VB6 变量定义作用域的一个奇特形式
C#或JAVA 下面的i定义是只会限定在if 条件块里的: if (1 == 2) { int i = 000; } else { i = 111;// 错误,未定义. } i = 222;//错误 ...
- WPF 带清除按钮的文字框SearchTextBox
原文:WPF 带清除按钮的文字框SearchTextBox 基于TextBox的带清除按钮的搜索框 样式部分: <!--带清除按钮文字框--> <Style TargetType=& ...
- Ionic 部分手机升级不成功的问题
Android端的手机App发布之后的一段时间,用户反馈App无法升级的情况. 原因分析: 对代码进行错误在线,提示是FileNOTFindException错误,确定是下载的时候保存的目的路径 不存 ...
- 使用IE浏览提示:该页面无法显示
问题描述: 我们有一个外部招聘的网站,DBA反馈新版上线过后首页集成的登录部分页面无法打开,一直显示“该页面无法显示”! 问题排查: 1.因为我本身也不是负责这一块的业务,刚开始以为是网站本身程序的问 ...
- 省市区三级联动,JS实现
文件下载地址:http://files.cnblogs.com/files/chenwolong/jsAddress.rar 示例截图: 在这里自己记录一个方法: function cmbAddOpt ...
- 【精】【入门篇】js正则表达式
前言 最近有了点时间,就回头看了一下<学习正则表达式>这本书.怎么说呢,这本书适合从零开始学习正则表达式或者有一点基础但是想要加强这方面能力的读者.这本书的风格是“实践出真知”,使用归纳方 ...
- NTP服务部署和测试
1. 概述2. 部署3. 配置4. 客户端配置4.1 客户端安装ntpdate4.2 同步设置 1. 概述 本篇博客主要记录如何部署一台NTP服务器,用于内网时间同步. 时间服务器对于集群内部节点之间 ...
- CF 1047 C. Enlarge GCD
传送门 [http://codeforces.com/contest/1047/problem/C] 题意 给你n个数,移除最少的数字使剩下的数字GCD大于初始GCD 思路 需要一点暴力的技巧,先求出 ...
- @Scheduled 定时
此文章记录在spring boot项目中的使用 1,在项目的启动类中加注解@EnableScheduling,表示此项目可以进行定时 @SpringBootApplication @EnableSch ...
- Java面向对象(Eclipse高级、类与接口作为参数返回值)
面向对象 今日内容介绍 u Eclipse常用快捷键操作 u Eclipse文档注释导出帮助文档 u Eclipse项目的jar包导出与使用jar包 u 不同修饰符混合使用细节 u 辨析何时定义变 ...