Python数据分析实例操作
import pandas as pd #导入pandas
import matplotlib.pyplot as plt #导入matplotlib
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
%matplotlib inline
数据读取与索引
bra = pd.read_csv('data/bra.csv')
bra.head()

选取列
bra.content

bra[['creationTime','productColor']].head()

选择行
bra[1:6]

选择行和列
bra.ix[[2,3],[1,3]] #使用ix

bra.ix[1:5,['productColor']]

bra.iloc[[2,3],[1,3]] #使用iloc

bra.loc[1:5,['content','creationTime','productSize']] #使用loc

bra.loc[1:5,'content':'userClientShow']

数据预处理
缺失值
bra.describe() #查看数据的分布情况,可返回变量和观测的数量、缺失值和唯一值的数目、平均值、分位数等相关信息

bra['userClientShow'].unique() #userClientShow列有几种选项

bra['userClientShow'].isnull().sum() #初始缺失值数量

bra['userClientShow'].fillna('不详',inplace=True) #缺失值替换为“不详”
bra['userClientShow'].isnull().sum() #赋值后的缺失值数量

新增列
bra.dtypes #查看属性

bra['creationTime'] = pd.to_datetime(bra['creationTime']) #更新类型
bra.dtypes

bra['hour'] = [i.hour for i in bra['creationTime']] #新建hour列
bra

字符串操作
bra.productSize.unique() #查看productSize的唯一值

cup = bra.productSize.str.findall('[a-zA-Z]+').str[0] #新增列cup
cup2 = cup.str.replace('M','B')
cup3 = cup2.str.replace('L','C')
cup4 = cup3.str.replace('XC','D')
bra['cup'] = cup4
bra.head()

bra['cup'].unique() #查看cup唯一值

数据转换
bra.productColor.unique() #查看productColor唯一值

def getColor(s):
if '黑' in s:
return '黑色'
elif '肤' in s:
return '肤色'
elif '蓝' in s:
return '蓝色'
elif '红' in s:
return '红色'
elif '紫' in s:
return '紫色'
elif '白' in s:
return '白色'
elif '粉' in s:
return '粉色'
elif '灰' in s:
return '灰色'
elif '绿' in s:
return '绿色'
elif '青' in s:
return '青色'
else:
return s
bra['color'] = bra['productColor'].map(getColor) #从productColor列查询,赋值到定义的函数getColor,最终新增列color
bra

bra.color.unique() #查询color的唯一值

数据可视化
x = [1991,1992,1993,1994,1995,1996,1997]
y = [23,56,38,29,34,56,92]
plt.plot(x,y) #调用函数plot

plt.figure(figsize=(8,6),dpi=80) #调用函数firgure
plt.plot(x,y)

hour = bra.groupby('hour')['hour'].count() #hour列排序
hour

plt.xlim(0,25) #横轴0~25
plt.plot(hour,linestyle='solid',color='royalblue',marker='8') #颜色深蓝

cup_style = bra.groupby('cup')['cup'].count() #cup列唯一值得数量
cup_style

plt.figure(figsize=(8,6),dpi=80)
labels = list(cup_style.index)
plt.xlabel('cup') #x轴为cup
plt.ylabel('count') #y轴为count数量
plt.bar(range(len(labels)),cup_style,color='royalblue',alpha=0.7) #alpha为透明度
plt.xticks(range(len(labels)),labels,fontsize=12)
plt.grid(color='#95a5a6',linestyle='--',linewidth=1,axis='y',alpha=0.6)
plt.legend(['user-count'])
for x,y in zip(range(len(labels)),cup_style):
plt.text(x,y,y,ha='center',va='bottom')

color_style = bra.groupby('color')['color'].count() #color列唯一值得数量
color_style

plt.figure(figsize=(8,6),dpi=80)
plt.subplot(facecolor='gainsboro',alpha=0.2)
colors = ['brown','orange','gray','white','pink','purple','red','green','wheat','blue','gold','springgreen','black'] #颜色种类
labels = list(color_style.index)
plt.xlabel('count') #x轴为count数量
plt.ylabel('color') #y轴为color
plt.title('Color Distribution') #定义标题
plt.barh(range(len(labels)),color_style,color=colors,alpha=1)
plt.yticks(range(len(labels)),labels,fontsize=12)
plt.grid(color='#95a5a6',linestyle='--',linewidth=1,axis='x',alpha=0.4)

bra.head(30)

Python数据分析实例操作的更多相关文章
- python数据分析实例(1)
1.获取数据: 想要获得道指30只成分股的最新股价 import requests import re import pandas as pd def retrieve_dji_list(): try ...
- 创建Python数据分析的Docker镜像+Docker自定义镜像commit,Dockerfile方式解析+pull,push,rmi操作
实例解析Docker如何通过commit,Dockerfile两种方式自定义Dcoker镜像,对自定义镜像的pull,push,rmi等常用操作,通过实例创建一个Python数据分析开发环境的Dock ...
- 【Python数据分析】Python3操作Excel(二) 一些问题的解决与优化
继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛 ...
- Python之虚拟机操作:利用VIX二次开发,实现自己的pyvix(系列一)成果展示和python实例
在日常工作中,需要使用python脚本去自动化控制VMware虚拟机,现有的pyvix功能较少,而且不适合个人编程习惯,故萌发了开发一个berlin版本pyvix的想法,暂且叫其OpenPyVix.O ...
- 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- Python数据分析之Pandas操作大全
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...
- 小白学 Python 数据分析(17):Matplotlib(二)基础操作
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 【读书笔记与思考】《python数据分析与挖掘实战》-张良均
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...
随机推荐
- vi常用命令总结
1. 打开文件 > vi 文件 //该模式是命令模式 2. 尾行模式操作 > :q //该模式是“尾行模式” > :w //保存已经修改的文档 > :wq //保存并退出 &g ...
- java操作远程共享目录
一.前言 根据客户反馈,在进行文件下载的时候,新增远程共享目录,下载对应的文件到远程共享目录,采用常用的IO操作模式,提示下载成功,但是客户去远程共享目录查看对应的下载文件,反馈说没有找到对应的文件. ...
- netty源码解解析(4.0)-7 线程模型-IO线程EventLoopGroup和NIO实现(二)
把NIO事件转换成对channel unsafe的调用或NioTask的调用 processSelectedKeys()方法是处理NIO事件的入口: private void processSelec ...
- foreach 引发的值类型与引用类型思考
用都知道的一句话概括:“引用类型在堆上,栈上只保存引用:值类型即可存放于栈上也可存放于堆上,值类型变量直接存储值本身”. class Program { static void Main(string ...
- SqlServer主键
*主键 作用:唯一标识表中的一条记录. *特点: 1不能重复的列. 2主键不能为null. *同名时如何处理:王洋(大) 王洋(小) *主键有两种选用策略: 业务主键和逻辑主键. 业务主键是使用有业务 ...
- ArrayList和LinkedList的区别以及优缺点
作用 ArrayList和LinkedList都是实现了List接口的容器类,用于存储一系列的对象引用.他们都可以对元素的增删改查进行操作. 对于ArrayList,它在集合的末尾删除或添加元素所用的 ...
- 性能监控(6)–JAVA下的jinfo命令
jinfo可以用来查看正在运行的java应用程序的扩展参数,设置支持在运行时,修改部分参数. Jinfo的语法为: Usage: jinfo [option] <pid> (to conn ...
- Best way to learn android and java?
Question: I have been getting my feet wet with android sdk, eclipse, and other various beginner step ...
- 10个JavaScript难点
译者按: 能够读懂这篇博客的JavaScript开发者,运气不会太差... 原文: 10 JavaScript concepts every Node.js programmer must maste ...
- Landsat8 卫星数据下载
具体参考 https://www.ixxin.cn/2016/11/27/landsat8freedata/