题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9则输出4.

好了!把所用知识点说一下:

数论之勾股数组(毕达哥拉斯三元组)

本原勾股数组(a,b,c)(a为奇数,b偶数)都可由如下公式得出:a=st,b=(s²-t²)/2, c = (s²+t²)/2, 其中s>t>=1是没有公因数的奇数。

再把勾股数公式拿过来:

套路一:

当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。

实际上就是把a的平方数拆成两个连续自然数,例如:

n=1时(a,b,c)=(3,4,5)

n=2时(a,b,c)=(5,12,13)

n=3时(a,b,c)=(7,24,25) [1]  ... ...

这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 [1]

套路二:

2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1

也就是把a的一半的平方分别减1和加1,例如:

n=3时(a,b,c)=(6,8,10)

n=4时(a,b,c)=(8,15,17)

n=5时(a,b,c)=(10,24,26)

n=6时(a,b,c)=(12,35,37) [1]

代码:(注意运算过程中的溢出)

#include<cstdio>
#include<cstring>
#define ll long long
int vis[]; ll gcd(ll a, ll b)
{
return b == ? a : gcd(b, a%b);
} int main()
{
int n;
while (scanf("%d", &n) != EOF)
{
memset(vis, , sizeof(vis));
int ans1 = , ans2 = ;
for (ll s = ; s <= n;s+=)
for (ll t = ; t < s; t += )
{
if (gcd(s, t) == && (s*s + t*t) / <= n)
{
++ans1;
int a = s*t, b = (s*s - t*t) / , c = (s*s + t*t) / ;
for (ll i = ; i*c <= n; ++i)
vis[i*a] = vis[i*b] = vis[i*c] = ;
}
}
for (int i = ; i <= n;++i)
if (vis[i] == )++ans2;
printf("%d %d\n", ans1, ans2);
}
}

Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))的更多相关文章

  1. 勾股数组及其应用uva106

    勾股数组 设三元组(a,b,c)满足a^2 + b^2 = c^2的勾股数组,那么是否存在无穷多个勾股数组呢, 答案是肯定的,将三元组乘以d,可以得到新的三元组(da,db,dc) 即(da)^2 + ...

  2. URAL 2032 - Conspiracy Theory and Rebranding【本源勾股数组】

    [题意] 给出三角形的三个边长,均是10^7以内的整数,问三角形的三个角的坐标是否能均是整数,输出其中任意一个解. [题解] 一开始想的是枚举一条边的横坐标,然后通过勾股定理以及算角度求出其他点的坐标 ...

  3. 毕达哥拉斯三元组(勾股数组)poj1305

    本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...

  4. UVa 106 - Fermat vs Pythagoras(数论题目)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  5. 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras

    Fermat vs. Pythagoras Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 1493   Accepted: ...

  6. poj1305 Fermat vs. Pythagoras(勾股数)

    题目传送门 题意: 设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y, ...

  7. 数学--数论--直角三角形--勾股数---奇偶数列法则 a^2+b^2=c^2

    先说勾股数: 勾股数,又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 勾股数规律: 首先是奇数组口 ...

  8. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  9. POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)

    设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y,z构成一个本原的毕达 ...

随机推荐

  1. Java技术开发中的坑

    1.(2014/05/28)struts2中使用eclipse自动获取getter和setter方法的坑 今天着实被eclipse坑了一把,平时遇到get和set方法时,我都是通过eclipse自动生 ...

  2. [Cerc2012]Non-boring sequences

    Description 定义一个序列是不无聊的,当且仅当它的所有子区间都存在一个独一无二的数字,即每个子区间里至少存在一个数字只出现过一次.给定一个长度为\(N(N\leq2\times 10^5)\ ...

  3. 我对alias的重新认识:通过alias让rm更安全

    bash&shell系列文章:http://www.cnblogs.com/f-ck-need-u/p/7048359.html rm的悲剧总是发生在不经意之间,所以无论是在shell脚本中还 ...

  4. 今天通过npm 安装 install 的时候出现的问题

    E:\Workspace_WebStorm\angular2>npm install -gC:\Users\lyx\AppData\Roaming\npm`-- angular2@0.0.0 ` ...

  5. APiCloud学习

    端API调用 核心模块在 window.api 对象下,默认提供该模块,不需要单独引用. 扩展模块在相应的模块对象下(例如:文件系统模块在fs对象下),需要require引入(var fs = api ...

  6. linq left join ,inner join ,crossjoin

    inner join : linq 默认使用Inner Join的链接方式,如下面的表达式一样: Left Join: 左链接返回左表的全部数据,以及右表中满足链接条件和不满足链接条件的数据,不满足的 ...

  7. 最优-scroll事件的监听实现

    1. 背景和目标 前端在监听scroll这类高频率触发事件时,常常需要一个监听函数来实现监听和回调处理.传统写法上利用setInterval或setTimeout来实现. 为了减小 CPU 开支,往往 ...

  8. Java集合框架——jdk 1.8 ArrayList 源码解析

    前言:作为菜鸟,需要经常回头巩固一下基础知识,今天看看 jdk 1.8 的源码,这里记录 ArrayList 的实现. 一.简介 ArrayList 是有序的集合: 底层采用数组实现对数据的增删查改: ...

  9. Mybatis逆向工程生成po、mapper接口、mapper.xml

    Mybatis逆向工程生成po.mapper接口.mapper.xml 一.新建一个maven工程 请查看我的另一篇博客:<使用idea创建一个maven工程> 二.引入所需依赖 需要my ...

  10. 在JSP中获取oracle中的时间戳类型的字段并显示

    在oracle中有一种特殊的时间显示类型——Timestamp时间戳 通常我们将当前时间转化为时间戳的语法如下: select cast (sysdate as timestamp ) from du ...