Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))
题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9则输出4.
好了!把所用知识点说一下:
本原勾股数组(a,b,c)(a为奇数,b偶数)都可由如下公式得出:a=st,b=(s²-t²)/2, c = (s²+t²)/2, 其中s>t>=1是没有公因数的奇数。
再把勾股数公式拿过来:
套路一:
当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25) [1] ... ...
这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 [1]
套路二:
2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37) [1]
代码:(注意运算过程中的溢出)
#include<cstdio>
#include<cstring>
#define ll long long
int vis[]; ll gcd(ll a, ll b)
{
return b == ? a : gcd(b, a%b);
} int main()
{
int n;
while (scanf("%d", &n) != EOF)
{
memset(vis, , sizeof(vis));
int ans1 = , ans2 = ;
for (ll s = ; s <= n;s+=)
for (ll t = ; t < s; t += )
{
if (gcd(s, t) == && (s*s + t*t) / <= n)
{
++ans1;
int a = s*t, b = (s*s - t*t) / , c = (s*s + t*t) / ;
for (ll i = ; i*c <= n; ++i)
vis[i*a] = vis[i*b] = vis[i*c] = ;
}
}
for (int i = ; i <= n;++i)
if (vis[i] == )++ans2;
printf("%d %d\n", ans1, ans2);
}
}
Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))的更多相关文章
- 勾股数组及其应用uva106
勾股数组 设三元组(a,b,c)满足a^2 + b^2 = c^2的勾股数组,那么是否存在无穷多个勾股数组呢, 答案是肯定的,将三元组乘以d,可以得到新的三元组(da,db,dc) 即(da)^2 + ...
- URAL 2032 - Conspiracy Theory and Rebranding【本源勾股数组】
[题意] 给出三角形的三个边长,均是10^7以内的整数,问三角形的三个角的坐标是否能均是整数,输出其中任意一个解. [题解] 一开始想的是枚举一条边的横坐标,然后通过勾股定理以及算角度求出其他点的坐标 ...
- 毕达哥拉斯三元组(勾股数组)poj1305
本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...
- UVa 106 - Fermat vs Pythagoras(数论题目)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras
Fermat vs. Pythagoras Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 1493 Accepted: ...
- poj1305 Fermat vs. Pythagoras(勾股数)
题目传送门 题意: 设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y, ...
- 数学--数论--直角三角形--勾股数---奇偶数列法则 a^2+b^2=c^2
先说勾股数: 勾股数,又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 勾股数规律: 首先是奇数组口 ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)
设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y,z构成一个本原的毕达 ...
随机推荐
- MySQL多表查询练习题
一.准备数据 #创建表及插入记录 CREATE TABLE class ( cid ) NOT NULL AUTO_INCREMENT, caption ) NOT NULL, PRIMARY KEY ...
- 探秘 Java 热部署二(Java agent premain)
# 前言 在前文 探秘 Java 热部署 中,我们通过在死循环中重复加载 ClassLoader 和 Class 文件实现了热部署的功能,但我们也指出了缺点-----不够灵活.需要手动修改文件等操作. ...
- Yarn的运行原理(执行流程)
服务功能 ResouceManager: 1.处理客户端的请求 2.启动和监控ApplicationMaster 3.监控nodemanager 4.资源的分配和调度 ...
- ios -- 成员变量、实例变量与属性的区别
最近打开手机就会被胡歌主演的<猎场>刷屏,这剧我也一直在追,剧中的郑秋冬,因为传销入狱五年,却在狱中拜得名师孙漂亮(孙红雷),苦学HR,并学习了心理学,成功收获两样法宝.出狱后因为怕受 ...
- 【Redis】3、Redis集群部署
Redis 集群是一个提供在多个Redis间节点间共享数据的程序集. Redis集群并不支持处理多个keys的命令,因为这需要在不同的节点间移动数据,从而达不到像Redis那样的性能,在高负载的情况下 ...
- java——线程
线程与进程 1.线程:程序中单独顺序的控制流 线程本身是通过程序进行运行 线程是程序中的顺序控制流,只能使用分配给程序的资源与环境 2.进程:执行中的程序 一个进程可以包含一个或多个线程 一个进程至少 ...
- Clock Pictures(kmp + Contest2075 - 湖南多校对抗赛(2015.04.26))
Problem H: Clock Pictures Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 73 Solved: 18[Submit][Stat ...
- Vim i和a区别
i是当前位置插入 a是当前文字的后面插入
- js-Higher-base.js
// 1.基于原型链的继承 // 继承属性 // 当访问一个对象的属性时发生的行为: // 假定有一个对象 o, 其自身的属性(own properties)有 a 和 b: {a: 1, b: 2} ...
- JS中的数学方法
1 . Math.ceil() 向上取整 2. Math.floor() 向下取整 3. Math.round() 四舍五入取整 4. Math.random() 生成 ...