[lightoj P1151] Snakes and Ladders
1151 - Snakes and Ladders
Time Limit: 2 second(s) Memory Limit: 32 MB
'Snakes and Ladders' or 'Shap-Ludu' is a game commonly played in Bangladesh. The game is so common that it would be tough to find a person who hasn't played it. But those who haven't played it (unlucky of course!) the rules are as follows. There is a 10 x 10 board containing some cells numbered from 1 to 100.
- You start at position 1.
- Each time you throw a perfect dice containing numbers 1 to 6.
- There are some snakes and some ladders in the board. Ladders will take you up from one cell to another. Snakes will take you down.
- If you reach a cell that contains the bottom part of a ladder, you will immediately move to the cell which contains the upper side of that ladder. Similarly if you reach a cell that has a snake-head you immediately go down to the cell where the tail of that snake ends.
- The board is designed so that from any cell you can jump at most once. (For example there is a snake from 62 to 19, assume that another is from 19 to 2. So, if you reach 62, you will first jump to 19, you will jump to 2. These kinds of cases will not be given)
- There is no snake head in the 100-th cell and no ladder (bottom part) in the first cell.
- If you reach cell 100, the game ends. But if you have to go outside the board in any time your move will be lost. That means you will not take that move and you have to throw the dice again.
Now given a board, you have to find the expected number of times you need to throw the dice to win the game. The cases will be given such that a result will be found.
Input
Input starts with an integer T (≤ 105), denoting the number of test cases.
The first line of a case is a blank line. The next line gives you an integer n denoting the number of snakes and ladders. Each of the next n lines contain two integers a and b (1 ≤ a, b ≤ 100, a ≠ b). If a < b, it means that there is a ladder which takes you from a to b. If a > b, it means that there is a snake which takes you from a to b. Assume that the given board follows the above restrictions.
Output
For each case of input, print the case number and the expected number of times you need to throw the dice. Errors less than 10-6 will be ignored.
Sample Input
2
14
4 42
9 30
16 8
14 77
32 12
37 58
47 26
48 73
62 19
70 89
71 67
80 98
87 24
96 76
0
Output for Sample Input
Case 1: 31.54880806
Case 2: 33.0476190476
主要题意就不解释了。。
我们设从点i到100的步数期望为Ei。
则:
如果Ei有连向其他格子的边,设走到to[i],则Ei=Etoi。
否则Ei=(Ex1+Ex2+...+Exk)*(1/6)+1。其中,k=min(6,100-i),x1+1=x2,x2+1=x3,......xi+1=xi+1。
但是我们发现,to[i]可能大于i,也可能小于i,所以不能直接DP或递推。
所以相当于解一个有100个100元方程的方程组。其中最后一个方程已经确定,且得到E[100]=0。
那么,就相当于用高斯消元解一个有唯一解的实数方程组了。
code:
#include<bits/stdc++.h>
#define Ms(a,x) memset(a,x,sizeof a)
using namespace std;
;
int n,got[N]; double a[N][N],E[N];
?x:-x;}
void Gauss(int equ,int var) {
,col=,cho;
for (; row<=equ&&col<=var; row++,col++) {
cho=row;
; i<=equ; i++)
if (abso(a[i][col])>abso(a[cho][col])) cho=col;
if (cho!=row)
; i++) swap(a[cho][i],a[row][i]);
) {col--; continue;}
; i<=equ; i++) ) {
double k=a[i][col]/a[row][col];
; j++) a[i][j]-=k*a[row][j];
}
}
for (int i=var; i; i--) {
];
; j<=var; j++) re-=a[i][j]*E[j];
E[i]=re/a[i][i];
}
}
int main() {
int T; scanf("%d",&T);
; ts<=T; ts++) {
cin>>n,Ms(got,),Ms(a,),Ms(E,);
,x,y; i<=n; i++)
scanf("%d%d",&x,&y),got[x]=y;
,c; i<; i++) if (!got[i]) {
c=min(,-i),a[i][i]=c,a[i][]=;
; j<=&&i+j<=; j++) a[i][i+j]=-;
} ,a[i][got[i]]=-,a[i][]=;
a[][]=,a[][]=;
Gauss(,);
printf(]);
}
;
}
[lightoj P1151] Snakes and Ladders的更多相关文章
- LightOJ - 1151 Snakes and Ladders —— 期望、高斯消元法
题目链接:https://vjudge.net/problem/LightOJ-1151 1151 - Snakes and Ladders PDF (English) Statistics F ...
- LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP
首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...
- LightOJ - 1151 Snakes and Ladders
LightOJ - 1151 思路: 将期望dp[x]看成自变量,那么递推式就可以看成方程组,用高斯消元求方程组的解就能求解出期望值 高斯消元求解的过程也是期望逆推的过程,注意边界情况的常数项,是6/ ...
- LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)
题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...
- LightOJ 1151 Snakes and Ladders 期望dp+高斯消元
题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定 而且 ...
- LightOJ - 1151 Snakes and Ladders(概率dp+高斯消元)
有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格子,G[i]表示从i传送到G[i].1和100不会有传送,一个格子也不会有两 ...
- Snakes and Ladders LightOJ - 1151( 概率dp+高斯消元)
Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格 ...
- [Swift]LeetCode909. 蛇梯棋 | Snakes and Ladders
On an N x N board, the numbers from 1 to N*N are written boustrophedonically starting from the botto ...
- light oj 1151 - Snakes and Ladders 高斯消元+概率DP
思路: 在没有梯子与蛇的时候很容易想到如下公式: dp[i]=1+(∑dp[i+j])/6 但是现在有梯子和蛇也是一样的,初始化p[i]=i; 当有梯子或蛇时转移为p[a]=b; 这样方程变为: dp ...
随机推荐
- NIO学习资料
五大IO模型 https://jiges.github.io/2018/02/07/%E4%BA%94%E5%A4%A7IO%E6%A8%A1%E5%9E%8B/ Getting started wi ...
- Python之多进程&异步并行
由于python的gil,多线程不是cpu密集型最好的选择 多进程可以完全独立的进程环境中运行程序,可以充分的利用多处理器 但是进程本身的隔离带来的数据不共享也是一个问题,而且线程比进程轻量 impo ...
- poj1733(并查集+离散化)
题目大意:有一个长度为n的0,1字符串, 给m条信息,每条信息表示第x到第y个字符中间1的个数为偶数个或奇数个, 若这些信息中第k+1是第一次与前面的话矛盾, 输出k; 思路:x, y之间1的个数为偶 ...
- mysql优化方案之sql优化
优化目标 1.减少 IO 次数 IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先 ...
- 面试(I)
即时通讯 为什么要TCP连接建立3次? 假设是2次: 假如在第1次客户端向服务器端发送请求因为阻塞,客户端会再次给服务器端发送请求,这次服务器端和客户端建立了连接.这样双方就可以发送数据了,发送完以后 ...
- Ajax跨域请求COOKIE无法带上的解决办法
原生ajax请求方式: var xhr = new XMLHttpRequest(); xhr.open("POST", "http://xxxx.com/demo/b/ ...
- 一文理解 Java NIO 核心组件
同步.异步.阻塞.非阻塞 首先,这几个概念非常容易搞混淆,但NIO中又有涉及,所以总结一下[1]. 同步:API调用返回时调用者就知道操作的结果如何了(实际读取/写入了多少字节). 异步:相对于同步, ...
- LinkedList 利用的是尾插法
- js实现打印
<html> <head> <meta http-equiv="Content-Type" content="text/html; char ...
- 生成id
package com.develop.web.util; import java.security.MessageDigest; import java.text.SimpleDateFormat; ...