1151 - Snakes and Ladders

Time Limit: 2 second(s)    Memory Limit: 32 MB

'Snakes and Ladders' or 'Shap-Ludu' is a game commonly played in Bangladesh. The game is so common that it would be tough to find a person who hasn't played it. But those who haven't played it (unlucky of course!) the rules are as follows. There is a 10 x 10 board containing some cells numbered from 1 to 100.

  1. You start at position 1.
  2. Each time you throw a perfect dice containing numbers 1 to 6.
  3. There are some snakes and some ladders in the board. Ladders will take you up from one cell to another. Snakes will take you down.
  4. If you reach a cell that contains the bottom part of a ladder, you will immediately move to the cell which contains the upper side of that ladder. Similarly if you reach a cell that has a snake-head you immediately go down to the cell where the tail of that snake ends.
  5. The board is designed so that from any cell you can jump at most once. (For example there is a snake from 62 to 19, assume that another is from 19 to 2. So, if you reach 62, you will first jump to 19, you will jump to 2. These kinds of cases will not be given)
  6. There is no snake head in the 100-th cell and no ladder (bottom part) in the first cell.
  7. If you reach cell 100, the game ends. But if you have to go outside the board in any time your move will be lost. That means you will not take that move and you have to throw the dice again.

Now given a board, you have to find the expected number of times you need to throw the dice to win the game. The cases will be given such that a result will be found.

Input

Input starts with an integer T (≤ 105), denoting the number of test cases.

The first line of a case is a blank line. The next line gives you an integer n denoting the number of snakes and ladders. Each of the next n lines contain two integers a and b (1 ≤ a, b ≤ 100, a ≠ b). If a < b, it means that there is a ladder which takes you from a to b. If a > b, it means that there is a snake which takes you from a to b. Assume that the given board follows the above restrictions.

Output

For each case of input, print the case number and the expected number of times you need to throw the dice. Errors less than 10-6 will be ignored.

Sample Input

2

14

4 42

9 30

16 8

14 77

32 12

37 58

47 26

48 73

62 19

70 89

71 67

80 98

87 24

96 76

0

Output for Sample Input

Case 1: 31.54880806

Case 2: 33.0476190476

主要题意就不解释了。。

我们设从点i到100的步数期望为Ei。

则:

如果Ei有连向其他格子的边,设走到to[i],则Ei=Etoi。

否则Ei=(Ex1+Ex2+...+Exk)*(1/6)+1。其中,k=min(6,100-i),x1+1=x2,x2+1=x3,......xi+1=xi+1。

但是我们发现,to[i]可能大于i,也可能小于i,所以不能直接DP或递推。

所以相当于解一个有100个100元方程的方程组。其中最后一个方程已经确定,且得到E[100]=0。

那么,就相当于用高斯消元解一个有唯一解的实数方程组了。

code:

 #include<bits/stdc++.h>
 #define Ms(a,x) memset(a,x,sizeof a)
 using namespace std;
 ;
 int n,got[N]; double a[N][N],E[N];
 ?x:-x;}
 void Gauss(int equ,int var) {
     ,col=,cho;
     for (; row<=equ&&col<=var; row++,col++) {
         cho=row;
         ; i<=equ; i++)
             if (abso(a[i][col])>abso(a[cho][col])) cho=col;
         if (cho!=row)
             ; i++) swap(a[cho][i],a[row][i]);
         ) {col--; continue;}
         ; i<=equ; i++) ) {
             double k=a[i][col]/a[row][col];
             ; j++) a[i][j]-=k*a[row][j];
         }
     }
     for (int i=var; i; i--) {
         ];
         ; j<=var; j++) re-=a[i][j]*E[j];
         E[i]=re/a[i][i];
     }
 }
 int main() {
     int T; scanf("%d",&T);
     ; ts<=T; ts++) {
         cin>>n,Ms(got,),Ms(a,),Ms(E,);
         ,x,y; i<=n; i++)
             scanf("%d%d",&x,&y),got[x]=y;
         ,c; i<; i++) if (!got[i]) {
             c=min(,-i),a[i][i]=c,a[i][]=;
             ; j<=&&i+j<=; j++) a[i][i+j]=-;
         } ,a[i][got[i]]=-,a[i][]=;
         a[][]=,a[][]=;
         Gauss(,);
         printf(]);
     }
     ;
 }

[lightoj P1151] Snakes and Ladders的更多相关文章

  1. LightOJ - 1151 Snakes and Ladders —— 期望、高斯消元法

    题目链接:https://vjudge.net/problem/LightOJ-1151 1151 - Snakes and Ladders    PDF (English) Statistics F ...

  2. LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP

    首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...

  3. LightOJ - 1151 Snakes and Ladders

    LightOJ - 1151 思路: 将期望dp[x]看成自变量,那么递推式就可以看成方程组,用高斯消元求方程组的解就能求解出期望值 高斯消元求解的过程也是期望逆推的过程,注意边界情况的常数项,是6/ ...

  4. LightOJ 1151 Snakes and Ladders(概率DP + 高斯消元)

    题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且 ...

  5. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  6. LightOJ - 1151 Snakes and Ladders(概率dp+高斯消元)

    有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格子,G[i]表示从i传送到G[i].1和100不会有传送,一个格子也不会有两 ...

  7. Snakes and Ladders LightOJ - 1151( 概率dp+高斯消元)

    Snakes and Ladders LightOJ - 1151 题意: 有100个格子,从1开始走,每次抛骰子走1~6,若抛出的点数导致走出了100以外,则重新抛一次.有n个格子会单向传送到其他格 ...

  8. [Swift]LeetCode909. 蛇梯棋 | Snakes and Ladders

    On an N x N board, the numbers from 1 to N*N are written boustrophedonically starting from the botto ...

  9. light oj 1151 - Snakes and Ladders 高斯消元+概率DP

    思路: 在没有梯子与蛇的时候很容易想到如下公式: dp[i]=1+(∑dp[i+j])/6 但是现在有梯子和蛇也是一样的,初始化p[i]=i; 当有梯子或蛇时转移为p[a]=b; 这样方程变为: dp ...

随机推荐

  1. cocos2dx JS 图片精灵添加纹理缓存

    添加精灵图片缓存 : cc.spriteFrameCache.addSpriteFrames("res/pic.plist"); 从缓存中获取 : var frame = cc.s ...

  2. 蓝桥杯 基础训练 2n皇后

    数月前做的2N皇后基本看书敲代码的,然后发现当时的代码不对,正好做到算法提高的8皇后·改,顺便把以前的代码顺带改了下,题目如下: 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋 ...

  3. The type groovy.lang.GroovyObject cannot be resolved

    很明显是:编译 Groovy 不通过 解决办法:添加 Groovy 包 比如 maven 项目里: <dependency> <groupId>org.codehaus.gro ...

  4. Matlab的用法总结

    1. 对序列进行洗牌 randperm() randperm()产生随机的序列 %if filepaths 是一个5*1的结构体,then cshuffle = randperm(length(fil ...

  5. 根据MAC地址获取网络地址及ZDP_NwkAddrReq函数的用法

    1..对于设备需要获取本设备的网络地址和MAC地址: NLME_GetShortAddr()——返回本设备的16位网络地址 NLME_GetExtAddr()——  返回本设备的64位扩展地址 2.使 ...

  6. 使用shiro框架,解决跳转页面出现404的问题

    shiro框架是一个安全框架,在进行登录的时候,如果没有配置路径,它会跳到shiro的默认配置的路径“/”下面,所以总是会出现404的错误,因为它的路径是保存在session中 所以需要我们把sess ...

  7. java ==与equals()方法的总结

    1.基本数据类型,也称原始数据类型.byte,short,char,int,long,float,double,boolean   他们之间的比较,应用双等号(==),比较的是他们的值. 2.复合数据 ...

  8. zabbix 乱码问题

    一.乱码原因 查看cpu负载,中文乱码如下 这个问题是由于zabbix的web端没有中文字库,我们最需要把中文字库加上即可 二.解决zabbix乱码方法 2.1 上传字体文件到zabbix中 找到本地 ...

  9. docker容器与大数据组件的冲突点

    1.容器里面安装spark,外面的程序(安装spark主机的容器)会连接不上集群.理由:这个组件用的akka,连接上集群,会提示: akka.ErrorMonitor: dropping messag ...

  10. detours express版本的使用

    原文最早发表于百度空间2012-03-21 一.编译lib 1)拷贝它的src文件夹和system.mak文件到VS的VCVARS32.BAT所在的目录下 2)在命令提示符中运行VCVARS32.BA ...