GMA Round 1 抛硬币
抛硬币
扔一个硬币,正面概率为0.6。扔这枚硬币666次,正面就得3分,反面就得1分,求总分的方差。
直接套公式$np(1-p)*(X-Y)^2=666*0.6*(1-0.6)*(3-1)^2$
稍微证明一下这个式子,题目等价于正面2分,反面不得分,这里我们先假设正面得1分。
首先我们来证明期望得分E(x)=np:
$\sum_{i=0}^{n}*P(i)*i$
$=\sum_{i=0}^{n}C_{n}^{i}*i*p^i*(1-p)^{n-i}$
$=\sum_{i=1}^{n}n*C_{n-1}^{i-1}*p^i*(1-p)^{n-i}$
$=n\sum_{j=0}^{n-1}C_{n-1}^{j}*p^(j+1)*(1-p)^{n-1-j}(设j=i-1)$
$=np\sum_{j=0}^{n-1}C_{n-1}^{j}*p^j*(1-p)^{n-1-j}$
$=np(p+1-p)^{n-1}$
$=np$
那么得分为i(0≤i≤n)的概率为$P(X=i)=C_{n}^{i}p^i(1-p)^{n-i}$,方差 $$S^2=\sum_{i=0}^{n}P(i)*(i-np)^2=\sum_{i=0}^{n}P(i)*(i^2+n^2p^2-2inp)=\sum_{i=0}^{n}P(i)*i^2-n^2p^2$$
接下来只要求出得分的平方的期望值即可:
$\sum_{i=0}^{n}*P(i)*i^2$
$=\sum_{i=0}^{n}*C_{n}^{i}*i^2*p^i*(1-p)^{n-i}$
$=n\sum_{i=0}^{n-1}i*C_{n-1}^{i-1}*p^i*(1-p)^{n-i}$
$=np\sum{j=0}^{n-1}(j+1)*C_{n-1}^{j}*p^j*(1-p)^{n-1-j}$
$=np((n-1)p+1)$
$=n^2p^2-np^2+np$
$=n^2p^2+np(1-p)$
代入上式可得$S^2=n^2p^2+np(1-p)-n^2p^2=np(1-p)$,由于原题是正面得两分那么我们在这个式子的基础上乘个4就可以了。
由于高中阶段只要求记忆最终公式,不要求证明,本题实际上变成了为高三选手提供优势的题目。(看到好多高一高二选手卡在这道题)
定位:简单题
GMA Round 1 抛硬币的更多相关文章
- 模拟抛硬币(C语言实现)
实现代码: #include<stdio.h> #include<stdlib.h> int heads() { ; } int main(int argc, char *ar ...
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- [HNOI 2017]抛硬币
Description 题库链接 两人抛硬币一人 \(a\) 次,一人 \(b\) 次.记正面朝上多的为胜.问抛出 \(a\) 次的人胜出的方案数. \(1\le a,b\le 10^{15},b\l ...
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
随机推荐
- [转]Howto: 使用ImageBrush替换PictureMarkerSymbol以加强graphic显示性能
原文地址:http://support.esrichina-bj.cn/2009/0728/1007.html 文章编号 : 37033 软件: ArcGIS API for Microsoft Si ...
- net core体系-1概要
.net core最近园子讨论频率很高的话题,从不久前发布正式版本后,也是开始从netcore官网一步一步走向学习之路:.net跨平台的设计让人很是兴奋起来,因为做了多年的互联网研发者,见识了很多一流 ...
- Codeforces 837F Prefix Sums
Prefix Sums 在 n >= 4时候直接暴力. n <= 4的时候二分加矩阵快速幂去check #include<bits/stdc++.h> #define LL l ...
- spring cloud (一、服务注册demo_eureka)
首先我的博客记理论知识很少,大家对spring boot.spring cloud .分布式 .微服务什么的一点概念都没有的还请先去百度看看理论,知道了是做什么用的,然后再写下demo ,这样学起来 ...
- 2n的 位数
len=())+,(2n−1同样适用)
- spring的webutils包。适用于访问httpservletrequest和httpservletresponse
WebUtils位 于 org.springframework.web.util 包中的 WebUtils 是一个非常好用的工具类,它对很多 Servlet API 提供了易用的代理方法,降低了访问 ...
- JavaEE 之 log4j
1.log4j a.概念:一个非常优秀的开源日志记录工具 b.配置: ①src同目录下建立log4j.properties文件,书写: log4j.rootLogger=debug,appender1 ...
- selenium设置chrome和phantomjs的请求头信息
selenium设置chrome和phantomjs的请求头信息 出于反爬虫也好-跳转到手机端页面也好都需要设置请求头,那么如何进行呢? 目录 一:selenium设置phantomjs请求头: ...
- Trace 2018徐州icpc网络赛 (二分)(树状数组)
Trace There's a beach in the first quadrant. And from time to time, there are sea waves. A wave ( xx ...
- Flutter - Migrate to AndroidX
一段时间没玩Flutter,今天打开一个项目编译了一下,突然发现不能编译了,出现 Launching lib\main.dart on Nokia X6 in debug mode... FAILUR ...