抽卡大赛

链接

分析:

  $O(n^4)$的做法比较好想,枚举第i个人选第j个,然后背包一下,求出有k个比他大的概率。

  优化:

  第i个人,选择一张卡片,第j个人选的卡片大于第i个人的概率是$p_j$,那么答案的生成函数是:

  $\prod \limits _{j = 1}^{n} [j != i]((1 - p_j) + p_jx)$

  那么可以将所有人选的卡片按A排序,每次移动,只有一个多项式发生改变,改变的只有一个人,每个人只有一个长度为2的多项式,乘和除都可以做到$O(n)$。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cctype>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = , mod = 1e9 + , inv100 = ; struct Node { int A, G, P, id; } a[N * N];
bool operator < (const Node& x,const Node &y) { return x.A > y.A; }
int f[N], v[N], sump[N], ans[N], n; int ksm(int a,int b) {
int res = ;
while (b) {
if (b & ) res = 1ll * res * a % mod;
a = 1ll * a * a % mod;
b >>= ;
}
return res;
}
void Div(int p) {
int inv = ksm( - p, mod - );
f[] = 1ll * f[] * inv % mod;
for (int i = ; i < n; ++i) f[i] = 1ll * (f[i] - 1ll * p * f[i - ] % mod) * inv % mod;
}
void Mul(int p) {
for (int i = n - ; i >= ; --i)
f[i] = (1ll * f[i] * (mod + - p) % mod + 1ll * f[i - ] * p % mod) % mod;
}
int main() {
n = read();int cnt = ;
for (int i = ; i <= n; ++i) {
int m = read(), sum = ;
for (int j = ; j <= m; ++j) {
a[++cnt].id = i;
a[cnt].A = read(), a[cnt].G = read(), a[cnt].P = read(); sum += a[cnt].P;
a[cnt].G = 1ll * ( - a[cnt].G) * inv100 % mod;
}
for (int j = ; j < m; ++j)
a[cnt - j].P = 1ll * a[cnt - j].P * ksm(sum, mod - ) % mod;
}
for (int i = ; i < n; ++i) v[i] = read();
sort(a + , a + cnt + );
f[] = ;
for (int i = ; i <= cnt; ++i) {
if (a[i].id != a[i - ].id) {
Div(sump[a[i].id]);
Mul(sump[a[i - ].id]);
}
for (int j = ; j < n; ++j)
ans[a[i].id] = (ans[a[i].id] + 1ll * f[j] * v[j] % mod * a[i].P % mod * a[i].G) % mod;
sump[a[i].id] = (sump[a[i].id] + a[i].P) % mod;
}
for (int i = ; i <= n; ++i) printf("%d\n", (ans[i] + mod) % mod);
return ;
}

51nod 抽卡大赛的更多相关文章

  1. 51nod 1850 抽卡大赛 (十二省联考模测) DP

    O(n4)O(n^4)O(n4)的DP很好想,但是过不了.来看看O(n3)O(n^3)O(n3)的把. Freopen的博客 CODE #include <cstdio> #include ...

  2. 十二省NOI“省选”联考模测(第二场)A抽卡大赛

    /* dp维护整体的概率, 每次相当于回退一格然后重新dp一格 */ #include<cstdio> #include<algorithm> #include<iost ...

  3. [51Nod1850] 抽卡大赛

    link $solution:$ 朴素 $dp$,暴力枚举选择 $i$ 号人的第 $j$ 张卡片,朴素 $dp$ 即可,时间复杂度 $O(n^4)$ . 考虑对于朴素 $dp$ 的优化,发现其实是一个 ...

  4. 三色抽卡游戏 博弈论nim

    你的对手太坏了!在每年的年度三色抽卡游戏锦标赛上,你的对手总是能打败你,他的秘诀是什么? 在每局三色抽卡游戏中,有n个卡组,每个卡组里所有卡片的颜色都相同,且颜色只会是红(R).绿(G).蓝(B)中的 ...

  5. [CSP-S模拟测试]:抽卡(概率DP)

    题目描述 水上由岐最近在肝手游,游戏里有一个氪金抽卡的活动.有$n$种卡,每种卡有 3 种颜色.每次抽卡可能什么也抽不到,也可能抽到一张卡.每氪金一次可以连抽 m 次卡,其中前$m−1$次抽到第$i$ ...

  6. Java实现 蓝桥杯 算法提高 抽卡游戏

    试题 算法提高 抽卡游戏 某个抽卡游戏卡池抽出限定卡的概率为p,该游戏有一个"井"的机制,抽满k次卡后直接送这张限定卡.试求获得这张限定卡需要的期望抽卡次数.输入为一行,用空格隔开 ...

  7. [loj3315]抽卡

    令$S$表示对于某一种抽卡顺序中某一段长度为$k$的段全部被抽到的时间(这里没有期望)所构成的集合,根据$min-max$容斥的公式,有$E(\min(S))=\sum_{T\subseteq S}( ...

  8. 51nod 省选联测 R2

    51nod 省选联测 R2 上场的题我到现在一道都没A,等哪天改完了再写题解吧,现在直接写第二场的. 第二场比第一场简单很多(然而这并不妨碍我不会做). A.抽卡大赛:http://www.51nod ...

  9. C#入门经典第十章例题 - - 卡牌

    1.库 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ...

随机推荐

  1. 输入两个整数n和m,从数列1,2,3,……n中随意取几个数,使其和等于m

    题目:编程求解,输入两个整数n和m,从数列1,2,3,……n中随意取几个数,使其和等于m.要求将所有的可能组合列出来. 分析:分治的思想.可以把问题(m,n)拆分(m - n, n -1)和(m, n ...

  2. gitlab 和 github 配置 SSH Keys

    gitlab 文档上给了很好的配置的例子:https://gitlab.com/help/ssh/README#locating-an-existing-ssh-key-pair 针对mac 下的使用 ...

  3. 什么是Docker?

      概观 Docker是推动集装箱运动的公司,也是唯一一家能够解决混合云中的每个应用的集装箱平台提供商.当今的企业面临数字化转型的压力,但受到现有应用程序和基础架构的制约,同时合理化日益多样化的云,数 ...

  4. Unity3d自制字体

    这篇教学中会使用到BMFont 这个工具 准备好Unity5.3.2版本,其他版本会有异常 一.制作字体 下载链接: http://www.angelcode.com/products/bmfont/ ...

  5. pb数据窗口之间的传参

    问题描述: 通过一个窗口打开一个子窗口并传递指定参数查询详细信息 解决方法: 在前者窗体的user object下的itemchanged事件中,相应位置加入openwithparm函数 :   op ...

  6. IE8以下兼容

    <!--[if lt IE 9]><script type="text/javascript">alert('IE版本太低,请升级后使用');</sc ...

  7. IO流_PrintWriter(字符打印流)与PrintStream(字节打印流)

    PrintStream:  1.提供了打印方法可以对多种数据类型值进行打印,并保持数据的表示形式  2.它不抛IOException  3.构造函数接受三种类型的值:  字符串路径  File对象   ...

  8. linux的压缩解压命令全解

    .tar 解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName(注:tar是打包,不是压缩!)——————————————— .zip解压:un ...

  9. js如何获得局部变量的值

    方法一: <script> var a; //全局变量 function test(){ var b=20; //局部变量   return b; //返回局部变量的值 }; a=test ...

  10. Hue添加MySQL数据库

    Hue没有配置RDBMS 问题描述 CHD集群添加完Hue组件之后.使用hive进行查询正常,但是使用DB Query查询报错, 报错内容如下: 解决方法 1. 在CHD集群中点击Hue组件,选择配置 ...