辗转相除法求最大公约数(gcd)的斐波那契数列(fib)最坏时间复杂度的证明




下载地址:http://pan.baidu.com/s/1jIt6UlK
辗转相除法求最大公约数(gcd)的斐波那契数列(fib)最坏时间复杂度的证明的更多相关文章
- Java算法求最大最小值,倒序,冒泡排序,斐波纳契数列,日历一些经典算法
一,求最大,最小值 int[] a={21,31,4,2,766,345,2,34}; //这里防止数组中有负数,所以初始化的时候给的数组中的第一个数. int max=a[0]; int min=a ...
- Python开发【算法】:斐波那契数列两种时间复杂度
斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...
- bzoj 3657 斐波那契数列(fib.cpp/pas/c/in/out)
空间 512M 时限2s [题目描述] 有n个大于1的正整数a1,a2,…,an,我们知道斐波那契数列的递推式是f(i)=f(i-1)+f(i-2),现在我们修改这个递推式变为f(i)=f(i-1) ...
- 求前n项的斐波那契数列、求两个数的最小公倍数、求两个数的最大公约数
class Fib(object): def __call__(self,n): a=[0,1] for i in range(n-2): an ...
- [NOIP1997] P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- P2626 斐波那契数列(升级版)(合数的质数分解, 大数为素数的概率十分小的利用)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1)=1f(1) = 1 f(1)=1 f(2)=1f(2) = 1f(2)=1 f(n)=f(n−1)+f(n−2)f(n) = f ...
- 斐波那契数列(C++ 和 Python 实现)
(说明:本博客中的题目.题目详细说明及参考代码均摘自 “何海涛<剑指Offer:名企面试官精讲典型编程题>2012年”) 题目 1. 写一个函数,输入 n, 求斐波那契(Fibonacci ...
- 洛谷——P2626 斐波那契数列(升级版)矩阵
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- 洛谷 P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
随机推荐
- B. Equations of Mathematical Magic
思路 打表找规律,发现结果是,2的(a二进制位为1总数)次方 代码 #include<bits/stdc++.h> using namespace std; #define ll long ...
- hashContext
java.lnag.Object中对hashCode的约定: 1. 在一个应用程序执行期间,如果一个对象的equals方法做比较所用到的信息没有被修改的话,则对该对象调用hashCode方法多次,它必 ...
- Stanford Word Segmenter的特定领域训练
有没有人自己训练过Stanford Word Segmenter分词器,因为我想做特定领域的分词,但在使用Stanford Word Segmenter分词的时候发现对于我想做的领域的一些词分词效果并 ...
- vs2013——单元测试&& 性能图
一.如何创建单元测试 下面这个博客中写的很详细: http://***/Article/11186 其中需要注意的是,首先新建工程项目,在此目录下Add单元测试项目,还需要在单元测试项目中引用被测试的 ...
- Ubuntu14.04安装PyMuPDF
最近写的一个东西需要将pdf转成图片然后放在网页上展示,找到了个非常好用的轮子叫做PyMuPDF,在windows上测试的时候跑的666,在ubuntu上安装依赖的时候,简直万脸懵逼.github上给 ...
- 《Linux内核分析》课程第八周学习总结
姓名:何伟钦 学号:20135223 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.study.163.com/course/U ...
- SqlDataAdapter简单介绍 (转)
From: http://blog.sobnb.com/u/92/5532.html 一.特点介绍 1.表示用于填充 DataSet 和更新 SQL Server 数据库的一组数据命令和一个数据库连 ...
- GitHub18
兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...
- WebPage设计专业术语
header footer master content placeholder breadcrumb 面包屑(breadcrumb)源于一个童话,在网站中就是一行层级属性链接组成的线性链接标示(我的 ...
- Visual Studio 2017 激活密钥 [复制记录]
Visual Studio 2017(VS2017) 企业版 Enterprise 注册码:NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Visual Studio 2017(VS201 ...