【BZOJ2301】Problem B
Description
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2 5 1 5 1
1 5 1 5 2
Sample Output
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
【题解思路】

类似二维前缀和的形式将问题转化。
差不多就是介个样子。区间加加减减的。
然后记住因为算区间的时候下取整,所以a,c都要减减。
其余均为套路。
【code】
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define rep(k,i,j) for(int k = i;k <= j; ++k)
#define FOR(k,i,j) for(int k = i;k >= j; --k)
inline int read(){
int x = ,f = ; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-''; ch=getchar();}
return x*f;
}
const int mod = 1e9+;
const int mxn = 5e4+;
inline void file(){
freopen(".in","r",stdin);
freopen(".out","w",stdout);
}
int a,b,c,d,k;
inline void in(){
a = read(),b = read();
c = read(),d = read();
k = read();
a--,c--;
}
bool v[mxn];
int prime[mxn],miu[mxn],sum[mxn];
inline void getmiu(){
memset(v,,sizeof(v));
int tot();
miu[] = ;
for(int i = ;i <= mxn; ++i){
if(!v[i]){
prime[++tot] = i;
miu[i]=-;
}
for(int j = ;j <= tot && i*prime[j]<= mxn; ++j){
v[i*prime[j]] = ;
if(i%prime[j]==){
miu[prime[j]*i] = ;
break;
}else miu[prime[j]*i] = -miu[i];
}
}
for(int i = ;i <= mxn; ++i) sum[i] = sum[i-]+miu[i];
}
inline int wor(int n,int m){
n/=k,m/=k;
if(n>m) swap(n,m);
int ret();
for(int i = ,last;i <= n; i = last+){
last = min(m/(m/i),n/(n/i));
ret += (n/i)*(m/i)*(sum[last]-sum[i-]);
}
return ret;
}
inline void print(){
printf("%d\n",wor(a,c)+wor(b,d)-wor(a,d)-wor(b,c));
}
int T;
int main(){
// file();
getmiu();
T = read();
while(T--){
in();
print();
}
return ;
}
【BZOJ2301】Problem B的更多相关文章
- 【BZOJ2301】Problem b(莫比乌斯反演)
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d, 且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000 ...
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- 【BZOJ2998】Problem A(动态规划)
[BZOJ2998]Problem A(动态规划) 题面 BZOJ 题解 一个人的成绩范围可以确定为一个区间 这样就变成了 选择若干区间,不重合, 每个区间有个权值,求最大权值和 这样就可直接\(dp ...
- 【bzoj2301】 HAOI2011—Problem b
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接) 题意 给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i= ...
- 【BZOJ2301】【HAOI2011】Problem b [莫比乌斯反演]
Problem b Time Limit: 50 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次 ...
- 题解【bzoj2301 [HAOI2011]Problem b】
Description 求有多少个数对 \((x,y)\) ,满足$ a \leq x \leq b$ ,\(c \leq y \leq d\) ,且 \(\gcd(x,y) = k\),\(\gcd ...
- 【bzoj2301】[HAOI2011]Problem b 莫比乌斯反演
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- 清北学堂例题 LUOGU2519 【HAOI2011】PROBLEM A
题目描述 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) 输入格式 第一行一个整数n,接下来n行每行两个整数,第i+1行 ...
- 【BZOJ】【2301】problem b
莫比乌斯反演/容斥原理 Orz PoPoQQQ PoPoQQQ莫比乌斯函数讲义第一题. for(i=1;i<=n;i=last+1){ last=min(n/(n/i),m/(m/i)); …… ...
随机推荐
- JavaScript Promise:去而复返
原文:http://www.html5rocks.com/en/tutorials/es6/promises/ 作者:Jake Archibald 翻译:Amio 女士们先生们,请准备好迎接 Web ...
- 前端 jquery获取当前页面的URL信息
以前在做网站的时候,经常会遇到当前页的分类高亮显示,以便让用户了解当前处于哪个页面.之前一直是在每个不同页面写方法.工程量大,也不便于修改.一直在想有什么简便的方法实现.后来在网上查到可以用获取当前U ...
- 【MySQL】锁——查看当前数据库锁请求的三种方法 20
MySQL提供了查看当前数据库锁请求的三种方法:1. show full processlist命令 观察state和info列 2. show engine innodb status\G ...
- Linux 命令 which whereis locate find
which: 查询某指令的完整路径 $ which [-a] command -a: 将所有在PATH目录中可以找到的指令均列出. 注意:只搜索PATH下的路径. whereis: 只搜索几个特定目录 ...
- .NET Core 2.1 源码学习:看 SocketsHttpHandler 如何在异步方法中连接 Socket
在 .NET Core 2.1 中,System.Net.Sockets 的性能有了很大的提升,最好的证明是 Kestrel 与 HttpClient 都改为使用 System.Net.Sockets ...
- [daily][python2] int型IP地址与string型IP地址互转
使用python2,类似如下操作. >>> import socket >>> import struct >>> socket.ntohl(]) ...
- 15.3-uC/OS-III资源管理(多值信号量)
多值信号量是 uC/OS 操作系统的一个内核对象, 主要用于标志事件的发生和共享资源管理. 1.如果想要使用多值信号量,就必须事先使能多值信号量. 多值信号量的使能位于“os_cfg.h”. 2.OS ...
- 算数运算符: + - * / //(地板除) %(取余) **(幂运算) / 比较运算符 > < >= <= == !=
# ### python运算符 #(1) 算数运算符: + - * / //(地板除) %(取余) **(幂运算) var1 = 5 var2 = 8 # +res = var1 + var2 pri ...
- python set的函数
1. add() 为集合添加元素 2. clear() 移除集合中的所有元素 3. copy() 拷贝一个集合 4. difference() 返回多个集合的差集 5. difference_upda ...
- 从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种 ...