原文链接 https://www.cnblogs.com/cly-none/p/9890837.html

题意:给出一棵大小为\(n\)的树,边有边权。\(m\)次询问,每次给出两个标号区间\([a,b]\)和\([c,d]\),求\(\max {dis(i,j) \ | \ a \leq i \leq b, \, c \leq j \leq d }\)。

\(n,m \leq 10^5\)

本题主要是对直径性质的运用。

先考虑这样一个结论。

对于两个点集\(A\)和\(B\),如果\(A\)的最远点对是\((a,b)\),\(B\)的最远点对是\((c,d)\),那么,点集\(A \bigcup B\)的最远点对的两个点一定是\(a,b,c,d\)中的两个。

至于证明,可以考虑直径的性质:到任何一个结点的最远点一定是两个直径端点中的一个。

注:一个点集的最远点对可以通过构建虚树转化为直径。

那么,考虑\(A\)中的一个结点,在\(B\)集合,到它最远的结点一定可以是\(c,d\)中的一个。否则,我们可以反证\((c,d)\)不是\(B\)中的最远点对。那么,在\(A \bigcup B\)中,任何一个结点,到它的最远点一定是\(a,b,c,d\)中的一个。因此,最远点对就一定是\(a,b,c,d\)中的两个。

于是,我们可以用线段树维护区间的最远点对。再根据我们的结论,\([c,d]\)中到\([a,b]\)的任意一点最远的结点一定是\([c,d]\)里最远点对中的一点,因此我们求出\([a,b]\)和\([c,d]\)各自的最远点对,就能求出答案了。

时间复杂度\(O(n \log n)\)。

#include <bits/stdc++.h>
using namespace std;
#define gc() getchar()
template <typename tp>
inline void read(tp& x) {
x = 0; char tmp; bool key = 0;
for (tmp = gc() ; !isdigit(tmp) ; tmp = gc())
key = (tmp == '-');
for ( ; isdigit(tmp) ; tmp = gc())
x = (x << 3) + (x << 1) + tmp - '0';
if (key) x = -x;
}
const int N = 100010, MP = 19;
struct edge {
int la,b,v;
} con[N << 1];
int tot,fir[N],n,m;
void add(int from,int to,int val) {
con[++tot] = (edge) {fir[from],to,val};
fir[from] = tot;
}
int dep[N],dfn[N << 1],dcnt,mn[N << 1][MP],ln[N << 1],rec[N],dis[N];
int lca(int x,int y) {
x = rec[x], y = rec[y];
if (x > y) swap(x,y);
int len = ln[y - x + 1];
return dep[dfn[mn[y][len]]] < dep[dfn[mn[x + (1 << len) - 1][len]]] ?
dfn[mn[y][len]] : dfn[mn[x + (1 << len) - 1][len]];
}
void dfs(int pos,int fa) {
dep[pos] = dep[fa] + 1;
dfn[rec[pos] = ++dcnt] = pos;
for (int i = fir[pos] ; i ; i = con[i].la) {
if (con[i].b == fa) continue;
dis[con[i].b] = dis[pos] + con[i].v;
dfs(con[i].b,pos);
dfn[++dcnt] = pos;
}
}
typedef pair<int,int> pii;
pii t[N << 2];
int ask(int x,int y) {
return dis[x] + dis[y] - 2 * dis[lca(x,y)];
}
void merge(pii& x,pii ls,pii rs) {
static int rec[4];
rec[0] = ls.first;
rec[1] = ls.second;
rec[2] = rs.first;
rec[3] = rs.second;
x = pii(-1,-1);
int cur = -1, tmp;
for (int i = 0 ; i < 4 ; ++ i)
for (int j = i+1 ; j < 4 ; ++ j) {
if (rec[i] == -1 || rec[j] == -1) continue;
tmp = ask(rec[i],rec[j]);
if (tmp > cur) x = pii(rec[i],rec[j]), cur = tmp;
}
}
void build(int x=1,int lp=1,int rp=n) {
if (lp == rp)
return (void) (t[x] = pii(lp,-1));
int mid = (lp + rp) >> 1;
build(x<<1,lp,mid);
build(x<<1|1,mid+1,rp);
merge(t[x],t[x<<1],t[x<<1|1]);
}
pii query(int l,int r,int x=1,int lp=1,int rp=n) {
if (l > rp || lp > r) return pii(-1,-1);
if (lp >= l && rp <= r)
return t[x];
int mid = (lp + rp) >> 1;
pii ret;
merge(ret,query(l,r,x<<1,lp,mid),query(l,r,x<<1|1,mid+1,rp));
return ret;
}
int main() {
int x,y,z,a,b,c,d;
read(n);
for (int i = 1 ; i < n ; ++ i) {
read(x), read(y), read(z);
add(x,y,z);
add(y,x,z);
}
dfs(1,0);
for (int i = 1 ; i <= dcnt ; ++ i) {
mn[i][0] = i;
for (int j = 1 ; (1 << j) <= i ; ++ j)
mn[i][j] = dep[dfn[mn[i][j-1]]] < dep[dfn[mn[i - (1 << j >> 1)][j-1]]] ?
mn[i][j-1] : mn[i - (1 << j >> 1)][j-1];
}
for (int i = 2 ; i <= dcnt ; i <<= 1)
++ ln[i];
for (int i = 2 ; i <= dcnt ; ++ i)
ln[i] += ln[i-1];
build();
read(m);
for (int i = 1 ; i <= m ; ++ i) {
read(a), read(b), read(c), read(d);
pii t1 = query(a,b);
pii t2 = query(c,d);
printf("%d\n",max(max(ask(t1.first,t2.first),ask(t1.first,t2.second)),max(ask(t1.second,t2.first),ask(t1.second,t2.second))));
}
return 0;
}

小结:直径这个东西的性质还是很丰富的。通过利用点集直径的可合并性,很容易套上一些数据结构。同时,两个点集间的最远点对可以转化为求各自的直径,这就使回答多个集合间的最远点对异常简洁。

【做题】51Nod1766树上的最远点对——直径&线段树的更多相关文章

  1. 【51NOD1766】树上的最远点对(线段树,LCA,RMQ)

    题意:n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间, 表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c< ...

  2. 51nod 1766 树上的最远点对(线段树)

    像树的直径一样,两个集合的最长路也是由两个集合内部的最长路的两个端点组成的,于是我们知道了两个集合的最长路,枚举一下两两端点算出答案就可以合并了,所以就可以用线段树维护一个区间里的最长路了. #inc ...

  3. 51Nod1766 树上的最远点对

    1766 树上的最远点对 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i&l ...

  4. 51Nod1766 树上的最远点对 ST表 LCA 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1766.html 题目传送门 - 51Nod1766 题意 n个点被n-1条边连接成了一颗树,给出a~ ...

  5. BZOJ 3038: 上帝造题的七分钟2 / BZOJ 3211: 花神游历各国 (线段树区间开平方)

    题意 给出一些数,有两种操作.(1)将区间内每一个数开方(2)查询每一段区间的和 分析 普通的线段树保留修改+开方优化.可以知道当一个数为0或1时,无论开方几次,答案仍然相同.所以设置flag=1变表 ...

  6. bzoj 4034 [HAOI2015]树上操作 入栈出栈序+线段树 / 树剖 维护到根距离和

    题目大意 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

  7. 树上第k小,可持久化线段树+倍增lca

    给定一颗树,树的每个结点都有权值, 有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少. 每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树 c[ro ...

  8. 2015 UESTC 数据结构专题D题 秋实大哥与战争 变化版本的线段树,合并区间,单点查询

    D - 秋实大哥与战争 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/59 D ...

  9. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

随机推荐

  1. oracle xe 创建表空间

    使用OracleXE控制台,我们会发现一个奇怪的现象:没有提供创建表空间.增加数据文件等功能.这似乎和我们使用Oracle标准版控制台不一样. 其实在OracleXE中可以创建新的表空间,不过一般情况 ...

  2. Java 中的 IO 与 socket 编程 [ 复习 ]

    一.Unix IO 与 IPC Unix IO:Open-Read or Write-Close IPC:open socket - receive and send to socket - clos ...

  3. 23.react-router 路由

    箭头函数扩展: 箭头函数: functoin 函数名(参数){    函数体 } 箭头函数: 1.把function删掉 , 2.参数和{}之间加上 箭头=> 简写: 1.参数的简写:只有一个参 ...

  4. IkAnalyzer2012FF_u1.jar免费下载

    链接:https://pan.baidu.com/s/1P_0cdRLKJO4VIUTokvTS0g 提取码:qt3w

  5. shell符号

    *:  通配符 *.c : c结尾的文件 *v : v结尾的文件 v* : v开头的文件

  6. BOM设计的一些问题及解决方案探讨----合版BOM

    BOM是ERP的核心资料,也是比较难的一块,不仅涉及的内容多,要求准确性高,时效性也要求高.但传统的ERP在处理BOM时有不少问题,因此也有些软件公司引入了各种BOM类型,像"标准BOM&q ...

  7. 添加一个Activity

    #Android中增加一个Activity 1. 在AndroidManifest.xml中增加: <activity android:name="com.example.NewAct ...

  8. 基于Enterprise Architect完成数据库建模

    基于Enterprise Architect完成数据库建模 “工欲善其事必先利其器”,Enterprise Architect是一款非常便利的设计工具,目前我也是刚刚使用没多久,进行过系统设计.UML ...

  9. File 文件

    1 File 概述 文件:file目录:directory路径:path File类静态成员变量: pathSeparator:与系统有关的路径分隔符,为了方便,它被表示为一个字符串separator ...

  10. Python时间、日期、时间戳之间的转换

    一.字符串与为时间字符串之间的互相转换 方法:time模块下的strptime方法 a = "2012-11-11 23:40:00" # 字符串转换为时间字符串 import t ...