Python数据分析_Pandas_窗函数
窗函数(window function)经常用在频域信号分析中。我其实不咋个懂,大概是从无限长的信号中截一段出来,然后把这一段做延拓变成一个虚拟的无限长的信号。用来截取的函数就叫窗函数,窗函数又分很多种,什么矩形窗、三角窗、高斯窗。
在scipy.signal中有各种我不懂的实现窗函数的方法。浏览了一下,头疼的紧。
那在pandas中也有实现窗函数的方法:rolling()。我呢就不折腾什么信号处理的东西,用金融数据做个小示例好了。
金融时间序列也是一种时间序列数据,前后次序是固定,多为二维数据。例如要看一只股票的平均移动线,就会用到rolling()。
先介绍一下这个翻滚函数
DataFrame.rolling(window,
min_periods=None,
freq=None,
center=False,
win_type=None,
on=None,
axis=0)
window: 移动窗口的大小。值可以是int(整数值)或offset(偏移)。如果是整数值的话,每个窗口是固定的大小,即包含相同数量的观测值。值为offset(偏移时长,eg:'2s')则指定了每个窗口包含的时间段,每个窗口包含的观测值的数量是不一定的。offset必须在index是时间类型数据时才可以使用。min_periods: 每个窗口最少包含的观测值数量,小于这个值的窗口结果为NA。值可以是int,默认None。offset情况下,默认为1。freq: 弃用。不用管它。center: 把窗口的标签设置为居中。布尔型,默认False,居右。win_type: 窗口的类型。上面介绍的,截取窗的各种函数。字符串类型,默认为None。可用的窗口类型有:- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
- bohman
- blackmanharris
- nuttall
- barthann
- kaiser (needs beta)
- gaussian (needs std)
- general_gaussian (needs power, width)
- slepian (needs width)
on: 可选参数。对于dataframe而言,指定要计算滚动窗口的列。值为列名。axis: int、字符串,默认为0,即对列进行计算。
使用方法,例:
In []: df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
In []: df.rolling(2).sum()
Out[]:
B
0 NaN
1 1.0
2 3.0
3 NaN
4 NaN
按tab键可以查看rolling对象可用的方法,如下:
In []: r = df.rolling(2)
In []: r
Out[]: Rolling [window=10,center=False,axis=0]
In []: r.
r.agg r.cov r.max r.ndim
r.aggregate r.exclusions r.mean r.quantile
r.apply r.is_datetimelike r.median r.skew
r.corr r.is_freq_type r.min r.std
r.count r.kurt r.name r.sum
注:
rolling_mean()这种写法已经淘汰了,现在都是df.rolling().mean()、df.rolling().std()这样来写。
例:计算苹果收盘价的平均移动线
获取数据
从雅虎获取苹果公司2016年1月1日至今的股票数据。
import pandas_datareader.data as web
apple = web.DataReader(name='AAPL',
data_source='yahoo',
start='2016-1-1')
print(apple.head())
数据大概是这个样子的:
Open High Low Close Volume \
Date
2016-01-04 102.610001 105.370003 102.000000 105.349998 67649400
2016-01-05 105.750000 105.849998 102.410004 102.709999 55791000
2016-01-06 100.559998 102.370003 99.870003 100.699997 68457400
2016-01-07 98.680000 100.129997 96.430000 96.449997 81094400
2016-01-08 98.550003 99.110001 96.760002 96.959999 70798000
Adj Close
Date
2016-01-04 103.057063
2016-01-05 100.474523
2016-01-06 98.508268
2016-01-07 94.350769
2016-01-08 94.849671
收盘价的折线图
为了方便观察滚完了之后的效果,我们把数据都画图呈现出来。
apple['Close'].plot(figsize=(9, 5), grid=True)
plt.show()

平均移动线MA
apple['roll_mean'] = apple['Close'].rolling(window=5).mean()
apple[['Close', 'roll_mean']].plot(subplots=True, figsize=(9, 5), grid=True)
plt.show()

这里窗口大小为5,所以前面四个数据是没有值的。把它们合在一起看看(把subplots改为False)。

拉近一点:

直观上看更平滑了。毕竟取五天做平均了,第一天涨第二天跌的这种一平均波动就小了。如果窗口变大会更平滑。
windowsize = [5,10,20]
for i in windowsize:
apple['roll_mean_'+str(i)] = apple['Close'].rolling(i).mean()
apple[['roll_mean_5','roll_mean_10','roll_mean_20']].plot(figsize=(9, 5), grid=True)
plt.show()

补充
除了算平均值,还可以计算方差、相关、最大最小值等等,大部分的统计量都可以计算,就看你需要了。
另外如果已有的函数不能满足需要,我们还可以用lambda和apply()写自己的方法。
例如(直接复制官网的咯):
mad = lambda x: np.fabs(x - x.mean()).mean()
apple['Close'].rolling(window=5).apply(mad).plot(figsize=(9, 5), grid=True)
plt.show()
这里计算的是平均绝对偏差。

我的图长得漂亮是因为安装了seaborn库,画图之前悄悄加载了一下。
另外,pandas中也有好些金融函数,比如计算指数加权移动平均,就现成的
pandas.ewma()。待挖掘的东西好多呢。
作者:ChZ_CC
链接:https://www.jianshu.com/p/f6e489de57f7
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Python数据分析_Pandas_窗函数的更多相关文章
- Python数据分析基础教程
Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后 ...
- [Python数据分析]新股破板买入,赚钱几率如何?
这是本人一直比较好奇的问题,网上没搜到,最近在看python数据分析,正好自己动手做一下试试.作者对于python是零基础,需要从头学起. 在写本文时,作者也没有完成这个小分析目标,边学边做吧. == ...
- 【Python数据分析】Python3多线程并发网络爬虫-以豆瓣图书Top250为例
基于上两篇文章的工作 [Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 [Python数据分析]Python3操作Excel(二) 一些问题的解决与优化 已经正确地实现 ...
- 【Python数据分析】Python3操作Excel(二) 一些问题的解决与优化
继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛 ...
- 【搬砖】【Python数据分析】Pycharm中plot绘图不能显示出来
最近在看<Python数据分析>这本书,而自己写代码一直用的是Pycharm,在练习的时候就碰到了plot()绘图不能显示出来的问题.网上翻了一下找到知乎上一篇回答,试了一下好像不行,而且 ...
- Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...
- Python数据分析(二): Numpy技巧 (1/4)
In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np
- Python数据分析(二): Numpy技巧 (2/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 昨天晚上发了第一 ...
- Python数据分析(二): Numpy技巧 (3/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 昨天晚上发了第一 ...
随机推荐
- dotnet new 命令使用模板生成Angular应用
dotnet new 命令使用模板快速生成单页应用,本文以Angular应用为例. 最新版.NET Core SDK RC4 最大改动是更新了 dotnet new 命令. dotnet new 默认 ...
- Set "$USE_DEPRECATED_NDK=true" in gradle.properties to continue using the current NDK integration. 解决办法
1.将 jni 文件夹名改为 cpp: 2.添加 CMakeLists.txt; 3.修改 build.gradle; externalNativeBuild { cmake { path " ...
- 如何在GooglePlay上面发布应用
上传和发布应用 注册开发者帐户后,您便可使用 Google Play 开发者控制台将应用上传到 Google Play. 访问 Google Play 开发者控制台. 点击屏幕顶部附近的添加新用户. ...
- CentOS 6.5静态IP的设置(NAT和桥接联网方式都适用)
不多说,直接上干货! 为了方便,用Xshell来.并将IP设置为静态的.因为,在CentOS里,若不对其IP进行静态设置的话,则每次开机,其IP都是动态变化的,这样会给后续工作带来麻烦.为此,我们需将 ...
- leetcode — remove-nth-node-from-end-of-list
/** * Source : https://oj.leetcode.com/problems/remove-nth-node-from-end-of-list/ * * Created by lve ...
- 突发奇想想学习做一个HTML5小游戏
前言: 最近一期文化馆轮到我分享了,分享了两个,一个是关于童年教科书的回忆,一个是关于免费电子书的.最后我觉得应该会不敌web,只能说是自己在这中间回忆了一下那个只是会学习的年代,那个充满梦想的年代. ...
- WIN7 环境下搭建 PHP7(64 位)操作步骤
WIN7 环境下搭建 PHP7(64 位)操作步骤 一.安装与配置 Apache 1.下载 Apache下载地址:https://www.apachelounge.com/download/ 2.安装 ...
- C++ 重载运算符简单举例
我们可以重定义或重载大部分 C++ 内置的运算符.这样,就能使用自定义类型的运算符. 重载的运算符是带有特殊名称的函数,函数名是由关键字 operator 和其后要重载的运算符符号构成的.与其他函数一 ...
- ASP.NET Identity 一 (转载)
来源:http://www.cnblogs.com/r01cn/p/5194257.html 注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的A ...
- 两个有序数组长度分别为m,n,最多m+n次查找找出相同的数
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...