# NumPy Python科学计算基础包

import numpy as np # 导入numpy库并起别名为np
numpy_array = np.array([[1,3,5],[2,4,6]])
print(numpy_array)

# SciPy Python中用于科学计算的函数集合
from scipy import sparse
# 创建一个二维数组,对角线为1,其余为0
eye = np.eye(4)
print(eye)
# 将numpy数组转换为csr格式的scipy稀疏矩阵
# 只保留非零元素
sparse_matrix = sparse.csr_matrix(eye)
print("scipy sparse csr matrix:\n{}".format(sparse_matrix))
# 使用COO格式
data = np.ones(4)
row_indices = np.arange(4)
col_indices = np.arange(4)
eye_coo = sparse.coo_matrix((data,(row_indices,col_indices)))
print("coo represtation:\n{}".format(eye_coo))
# matplotlib Python科学绘图库
%matplotlib inline
import matplotlib.pyplot as plt
# 在-10和10之间生成一个数组,共100个数
loc_x = np.linspace(-10,10,100)
# 用余弦函数生成第二个数组
loc_y = np.cos(loc_x)
# plot函数会绘制一个数组关于另一个数组的线图
plt.plot(loc_x,loc_y,marker="x")
# pandas 处理和分析数据的Python库
import pandas as pd
from IPython.display import display
#创建关于人的简单数据集
data = {"name":["zhangsan","lisi","wangwu"],
  "location":["齐齐哈尔","太行山","云贵高原"],
  "age":[12,34,56]
}
data_pandas = pd.DataFrame(data)
display(data_pandas) # 展示全部数据
print("-------条件查询-------")
display(data_pandas[data_pandas.age > 30])
结果:

# 稀疏矩阵

# pandas 数据集

# matplotlib Python科学绘图库

Python机器学习入门的更多相关文章

  1. python机器学习入门-(1)

    机器学习入门项目 如果你和我一样是一个机器学习小白,这里我将会带你进行一个简单项目带你入门机器学习.开始吧! 1.项目介绍 这个项目是针对鸢尾花进行分类,数据集是含鸢尾花的三个亚属的分类信息,通过机器 ...

  2. Python & 机器学习入门指导

    Getting started with Python & Machine Learning(阅者注:这是一篇关于机器学习的指导入门,作者大致描述了用Python来开始机器学习的优劣,以及如果 ...

  3. Python机器学习入门(1)之导学+无监督学习

    Python Scikit-learn *一组简单有效的工具集 *依赖Python的NumPy,SciPy和matplotlib库 *开源 可复用 sklearn库的安装 DOS窗口中输入 pip i ...

  4. 零起点PYTHON机器学习快速入门 PDF |网盘链接下载|

      点击此处进入下载地址 提取码:2wg3 资料简介: 本书采用独创的黑箱模式,MBA案例教学机制,结合一线实战案例,介绍Sklearn人工智能模块库和常用的机器学习算法.书中配备大量图表说明,没有枯 ...

  5. [Python]-numpy模块-机器学习Python入门《Python机器学习手册》-01-向量、矩阵和数组

    <Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...

  6. [Python]-pandas模块-机器学习Python入门《Python机器学习手册》-03-数据整理

    <Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...

  7. [Python]-pandas模块-机器学习Python入门《Python机器学习手册》-02-加载数据:加载文件

    <Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...

  8. [Python]-sklearn模块-机器学习Python入门《Python机器学习手册》-02-加载数据:加载数据集

    <Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习 ...

  9. [转]MNIST机器学习入门

    MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_ ...

随机推荐

  1. 夜神模拟已开启,adb命令检测不了设备解决方法

    日常APP测试中,很难拥有多种机型和各种安卓版本的手机,此时可以借助模拟器. 命令返回结果只有 “List of devices attached”,即代表检测不了模拟器 最近在使用夜神模拟器的时候, ...

  2. 当x,y和theta都是向量的时候如何计算损失

    function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTEC ...

  3. oracle无法启动asm实例记录

    首先查看asm进程ps aux|grep asmasm进程没起进行下面操作su - gridsrvctl start asmexit查看ora进程ps aux|grep oraora进程没起进行下面操 ...

  4. QC内部分享ppt

    Quality Center是一个基于Web的测试管理工具,可以组织和管理应用程序测试流程的所有阶段,包括制定测试需求.计划测试.执行测试和跟踪缺陷.此外,通过Quality Center还可以创建报 ...

  5. 2.WF 4.5 流程引擎设计思路

    本文主要给大家分享下基于WF 4.5框架的流程引擎设计思路 1.流程启动时的数据写入EventMsgPP对象中,ObjectAssemblyType记录流程启动时需要的类型,ObjectContent ...

  6. Spring Session - 使用Redis存储HttpSession例子

    目的 使用Redis存储管理HttpSession: 添加pom.xml 该工程基于Spring Boot,同时我们将使用Spring IO Platform来维护依赖版本号: 引入的依赖有sprin ...

  7. 【详解】换一个角度看Socket的数据读写

    前言 以前对IO.NIO还算了解,也写过Netty的项目.但是对底层的数据传递不是很了解,一直存有这方面的疑惑.但是由于有其他事情就被打断了.前阵子因为想要了解volatile关键字的原理,学习了下J ...

  8. JWT 从入门到精通

    什么是JWT Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该token被设计为紧凑且安全的,特别适用于分布式站点 ...

  9. 将应用代码由eclipse导入Android studio的方法NDK-Build和Cmake两种方法(以android_serialport_api为例)

    网上翻了几百篇博客,看了半天,要不就是写的乱七八糟看不懂,要不就是隐藏了一些细节,要不就是实现不了,最后还是在Android官网上看明白了,而且说得有条有理,以后遇到不懂的一定要先翻官网. 参考资料: ...

  10. 移动端meta整理

    <!doctype html> <html> <head> <meta charset="utf-8"> <meta http ...