题意

题目链接

Sol

这个题就比较休闲了。

\(t(p)\)显然等于最后一个没有约数的数的位置,那么我们可以去枚举一下。

设没有约数的数的个数有\(cnt\)个

因此总的方案为\(\sum_{i=cnt}^{r-l+1} C_{i-1}^{cnt-1} cnt! (r - l + 1 - cnt)!\)

稍微有点卡常,筛的时候加一下剪枝

#include<bits/stdc++.h>
#define Fin(x) freopen(#x".in", "r", stdin);
using namespace std;
const int MAXN = 1e7 + 10, mod = 1e9 + 7;
template<typename A, typename B> inline bool chmax(A &x, B y) {return x < y ? x = y, 1 : 0;}
template<typename A, typename B> inline bool chmin(A &x, B y) {return x > y ? x = y, 1 : 0;}
template<typename A, typename B> inline A mul(A x, B y) {return 1ll * x * y % mod;}
template<typename A, typename B> inline void add2(A &x, B y) {x = x + y >= mod ? x + y - mod : x + y;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int fac[MAXN], ifac[MAXN], vis[MAXN], cnt;
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int C(int N, int M) {
return mul(fac[N], mul(ifac[M], ifac[N - M]));
}
int main() {
int l = read(), r = read();
for(int i = l; i <= r; i++) {
if(vis[i]) continue;
if(!vis[i]) cnt++;
for(int j = i + i; j <= r; j += i)
vis[j] = 1;
}
fac[0] = 1;
for(int i = 1; i <= r; i++) fac[i] = mul(i, fac[i - 1]);
ifac[r] = fp(fac[r], mod - 2);
for(int i = r; i; i--) ifac[i - 1] = mul(ifac[i], i);
int ans = 0;
for(int i = cnt; i <= r - l + 1; i++)
add2(ans, mul(i, mul(C(i - 1, cnt - 1), mul(fac[cnt], fac[r - l + 1 - cnt]))));
cout << ans;
return 0;
}

洛谷P4562 [JXOI2018]游戏(组合数学)的更多相关文章

  1. 洛谷P4562 [JXOI2018]游戏 数论

    正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...

  2. luogu P4562 [JXOI2018]游戏 组合数学

    LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...

  3. 洛谷 P2197 nim游戏

    洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...

  4. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

  5. 洛谷 P1000 超级玛丽游戏

    P1000 超级玛丽游戏 题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级 ...

  6. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

  7. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

  8. 洛谷P1000 超级玛丽游戏(洛谷新手村1-1-1)

    题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级玛丽中的一个场景. *** ...

  9. 洛谷P1080 国王游戏 python解法 - 高精 贪心 排序

    洛谷的题目实在是裹脚布 还编的像童话 这题要 "使得获得奖赏最多的大臣,所获奖赏尽可能的少." 看了半天都觉得不像人话 总算理解后 简单说题目的意思就是 根据既定的运算规则 如何排 ...

随机推荐

  1. 设计模式,Let's “Go”! (上)

    code[class*="language-"], pre[class*="language-"] { background-color: #fdfdfd; - ...

  2. Java Web(三) 会话机制,Cookie和Session详解(转载)

    https://www.cnblogs.com/whgk/p/6422391.html 很大一部分应该知道什么是会话机制,也能说的出几句,我也大概了解一点,但是学了之后几天不用,立马忘的一干二净,原因 ...

  3. Java Web——过滤器

    <Java Web开发技术应用——过滤器> 过滤器是一个程序,它先于与之相关的servlet或JSP页面运行在服务器上.过滤器可附加到一个或多个servlet或JSP页面上,并且可以检查进 ...

  4. 测试工具之Jmeter(使用badboy录制脚本)

    前面使用badboy工具时说过,badboy是可以录制Jmeter的测试脚本,这样省去了自己设计测试用例的麻烦 Jmeter主要是一个性能测试工具,不光在web和http,现在扩展很多功能都可以在Jm ...

  5. ThreadLocal父子线程传递实现方案

    介绍InheritableThreadLocal之前,假设对 ThreadLocal 已经有了一定的理解,比如基本概念,原理,如果没有,可以参考:ThreadLocal源码分析解密.在讲解之前我们先列 ...

  6. 爽爽的GSON解析

    Gson解析的各种详细用法我就不说了. 说说我在项目具体遇到的. 当前公司的JSON解析基本上通过阿里的fastjson,以及JSONObject,JSONArray来解析.那种让我无语的感觉不是言语 ...

  7. 高可用Hadoop平台-Oozie工作流

    1.概述 在开发Hadoop的相关应用使用,在业务不复杂,任务不多的情况下,我们可以直接使用Crontab去完成相关应用的调度.今天给大家介绍的是统一管理各种调度任务的系统,下面为今天分享的内容目录: ...

  8. Mac上安装pipenv时报错

    version:mac os Mojave 10.14.2 执行时报错: pip install pipenv 改为: sudo pip install pipenv --upgrade --igno ...

  9. got & plt

    got plt类似与Windows PE文件中IAT(Import Address Table). 要使的代码地址无关,基本思想就是把与地址相关的部分放到数据段里面. ELF的做法是在数据段里面建立一 ...

  10. Go 环境变量相关操作

    Go语言中os包提供了一些环境变量的操作封装.包括: 设置环境变量:Setenv 获取环境变量:Getenv 删除指定的环境变量:Unsetenv 获取所有环境变量:Environ 清除所有环境变量: ...