求最大团。和等价性证明有类似之处,只不过这个不是求互推,而是只要a->b,或b->a即可。

同样的,容易想到先缩点,得到DAG,每个节点上保存SCC的点数,相信任意一条由根节点(入度为零)出发的路径中权值和最大的即为所求,dp即可解决。

 #include<stdio.h>
#include<string.h>
#include<stack>
#include<algorithm>
using namespace std; const int MAXN=;
const int MAXM=; struct Edge{
int v,next;
}edge[MAXM]; stack<int >stk;
int head[MAXN],tol;
int low[MAXN],pre[MAXN],sccno[MAXN],scc_cnt,TT,sccnum[MAXN];
int dp[MAXN]; void init()
{
tol=;
memset(head,-,sizeof(head));
} void add(int u,int v)
{
edge[tol].v=v;
edge[tol].next=head[u];
head[u]=tol++;
} void dfs(int u)
{
int v;
low[u]=pre[u]=++TT;
stk.push(u);
for(int i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!sccno[v])
low[u]=min(low[u],pre[v]);
}
if(low[u]==pre[u]){
scc_cnt++;
int s=;
do{
v=stk.top();
stk.pop();
sccno[v]=scc_cnt;
s++;
}while(u!=v);
sccnum[scc_cnt]=s;
}
} void tarjan(int n)
{
scc_cnt=TT=;
memset(low,,sizeof(low));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno)); for(int i=;i<=n;i++)
if(!pre[i])
dfs(i);
} int find_dfs(int u){
if(dp[u])
return dp[u];
else if(head[u]==-)
return dp[u]=sccnum[u]; int m=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].v;
m=max(m,find_dfs(v));
}
return dp[u]=sccnum[u]+m;
} int main()
{
int T,n,m;
int a[MAXM],b[MAXM];
int in[MAXN];
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m); init();
for(int i=;i<=m;i++)
{
scanf("%d%d",&a[i],&b[i]);
add(a[i],b[i]);
}
tarjan(n); init();
memset(in,,sizeof(in));
for(int i=;i<=m;i++)
{
if(sccno[a[i]]!=sccno[b[i]]){
in[sccno[b[i]]]++;
add(sccno[a[i]],sccno[b[i]]);
}
}
int s=;
memset(dp,,sizeof(dp));
for(int i=;i<=scc_cnt;i++)
if(!in[i])
s=max(s,find_dfs(i));
printf("%d\n",s);
}
return ;
}

UVA 11324 The Largest Clique(缩点+DAG上的dp)的更多相关文章

  1. Uva 11324 The Largest Clique【强连通 DAG动规 spfa】

    白书上的例题 做一遍tarjan后,缩点,每一个scc节点的权为它的结点数,做一次DAG上的动规,求出路径上的最大点权和,就可以了 #include<cstdio> #include< ...

  2. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  3. UVA 11324 The Largest Clique (强连通分量,dp)

    给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...

  4. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  5. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  6. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  7. uva 11324 The Largest Clique

    vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...

  8. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  9. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

随机推荐

  1. java身份证计算年龄

    技术交流群: 233513714 /** * 根据身份证计算年龄 * * @param idcard * @return */ public static Integer idCardToAge(St ...

  2. Java 虚拟机结构分析

    本博文主要介绍了JVM(Java Virtual Machine)的组成部分以及它们内部的工作机制和原理.需要注意的是,虽然平时我们用的大多是Sun(现已被Oracle收购)JDK提供的JVM,但是J ...

  3. 原子操作和volatile关键字

    原子操作:不可被中断的操作.要么全执行,要么全不执行. 现代CPU读取内存,通过读取缓存再写入主存.先去主存读--->写入缓存---->运行线程--->写入缓存---->写入主 ...

  4. 【Pascal's Triangle II 】cpp

    题目: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [ ...

  5. 孤荷凌寒自学python第三十天python的datetime.datetime模块

     孤荷凌寒自学python第三十天python的datetime.datetime模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) datetime.datetime模块包含了:datet ...

  6. windows版本cloudbase-init流程说明

    源码流程说明 - 程序首先判断操作系统类型,加载对应的模块 - 加载服务,服务共分为四种: 'cloudbaseinit.metadata.services.httpservice.HttpServi ...

  7. JavaWeb笔记(七)Filter&Listener

    Filter 实现Filter接口 一般用于完成通用的操作,如:登陆验证.统一编码处理.敏感字符过滤等 执行流程 执行过滤器 执行放行后的资源 继续执行过滤器放行代码下的代码 配置 拦截路径配置 注解 ...

  8. Thread sleep()休眠

    Thread sleep()休眠就是让线程进入休眠状态TIMED_WAITING,sleep("毫秒数"),当休眠时间到了之后继续线程.当然也可以用中断线程interrupt()来 ...

  9. iOS runLoop 理解

    目录 概述 run loop modes 一.概述 run loop叫事件处理循环,就是循环地接受各种各样的事件.run loop是oc用来管理线程里异步事件的工具.一个线程通过run loop可以监 ...

  10. TensorFlow应用实战 | TensorFlow基础知识

    挺长的~超出估计值了~预计阅读时间20分钟. 从helloworld开始 mkdir 1.helloworld cd 1.helloworldvim helloworld.py 代码: # -*- c ...