B树是一种多路平衡查找树,它的每一个节点最多包含k个孩子,k被称为B树的阶。k的大小取决于磁盘页的大小。B树主要应用于文件系统以及部分数据库索引,比如著名的非关系型数据库MongoDB。
一个m阶的B树具有如下几个特征:
1.根结点至少有两个子女。
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m
3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
4.所有的叶子结点都位于同一层。
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。

一个m阶的B+树具有如下几个特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。

B+树的优势:
1.单一节点存储更多的元素,使得查询的IO次数更少。
2.所有查询都要查找到叶子节点,查询性能稳定。
3.所有叶子节点形成有序链表,便于范围查询。

红黑树的5个性质:
(1)每个结点要么是红的要么是黑的。
(2)根结点是黑的。
(3)每个叶结点(叶结点即指树尾端NIL指针或NULL结点)都是黑的。
(4)如果一个结点是红的,那么它的两个儿子都是黑的。
(5)对于任意结点而言,其到叶结点树尾端NIL指针的每条路径都包含相同数目的黑结点。
正是红黑树的这5条性质,使一棵n个结点的红黑树始终保持了logn的高度。红黑树的查找、插入、删除的时间复杂度最坏为O(logn)

B-树 B+树 红黑树的更多相关文章

  1. 1.红黑树和自平衡二叉(查找)树区别 2.红黑树与B树的区别

    1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡 ...

  2. 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树

    某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...

  3. 从二叉查找树到平衡树:avl, 2-3树,左倾红黑树(含实现代码),传统红黑树

    参考:自平衡二叉查找树 ,红黑树, 算法:理解红黑树 (英文pdf:红黑树) 目录 自平衡二叉树介绍 avl树 2-3树 LLRBT(Left-leaning red-black tree左倾红黑树 ...

  4. 从二叉搜索树到AVL树再到红黑树 B树

    这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查 ...

  5. 简述树,Trie,Avl,红黑树

    树的表示方法 在平时工作中通常有2种方式来表示树状结构,分别是孩子链表示法和父节点表示法.光说名词可能无法让人联系到实际场景中,但是写出代码之后大家一定就明白了. 孩子链表示法,即将树中的每个结点的孩 ...

  6. 红黑树、B(+)树、跳表、AVL等数据结构,应用场景及分析,以及一些英文缩写

    在网上学习了一些材料. 这一篇:https://www.zhihu.com/question/30527705 AVL树:最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间 ...

  7. 大名鼎鼎的红黑树,你get了么?2-3树 绝对平衡 右旋转 左旋转 颜色反转

    前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3 ...

  8. 对B+树,B树,红黑树的理解

    出处:https://www.jianshu.com/p/86a1fd2d7406 写在前面,好像不同的教材对b树,b-树的定义不一样.我就不纠结这个到底是叫b-树还是b-树了. 如图所示,区别有以下 ...

  9. 红黑树与AVL树

    概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...

  10. AVL树与红黑树

    平衡树是平时经常使用数据结构. C++/JAVA中的set与map都是通过红黑树实现的. 通过了解平衡树的实现原理,可以更清楚的理解map和set的使用场景. 下面介绍AVL树和红黑树. 1. AVL ...

随机推荐

  1. 按失真类型分类整理IQA数据集:TID2013

    前面已经整理了TID2008,这次整理TID2013的工作相对较简单,只需要改代码的一部分就可以了,首先我大概介绍一些TID2013. TID2013是TID2008的加强版,链接如下:http:// ...

  2. 动态合并Repeater控件数据列 Ver2

    前一版本<动态合并Repeater控件数据列>http://www.cnblogs.com/insus/p/3240848.html .今天Insus.NET重新演示它,为什么? 因为两点 ...

  3. TensorFlow实现卷积神经网络

    1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...

  4. Windows10远程报错:由于CredSSP加密Oracle修正(ps:Win10家庭版)

    Windows10远程桌面连接 报错信息 : 网上找到方法 但是奈何是 "Win10家庭版" 不能使用这个办法,具体操作可以看最后的引用链接 !!!! 策略路径:“计算机配置”-& ...

  5. Unity自带IAP插件使用(googleplay)

    https://blog.csdn.net/ar__ha/article/details/64439872 Unity Services里的Unity IAP对于IOS和GooglePlay的支付用这 ...

  6. [51nod1190]最小公倍数之和V2(莫比乌斯反演)

    题解 传送门 题解 我是真的不明白这玩意儿是怎么跟反演扯上关系的-- 首先 \[ \begin{align} ans &=b\sum_{d|b}{1\over d}\sum_{i=a}^{b} ...

  7. web安全-传输安全

    web安全-传输安全 anyproxy 代理服务器在之间可以看到 1.HTTP传输窃听 浏览器-代理服务器-链路-服务器 传输链路窃听篡改 2.HTTP窃听 >* 窃听用户密码 >* 窃听 ...

  8. 关于javascript数据存储机制的一个案例。

    之前在学习js的结合性的时候,我有点不太明白,在网上找到一个比较经典的C语言优先级结合性的案例,就是下边这一个.本想在js之中测试一番,结果竟然发现得出的结果和网上的不一样,这令我百思不得其解,后经高 ...

  9. Julia体验 语言基础

    以前听说过Julia,不过那时候官网还处于时不时宕机状态,最近Julia发布了1.0 released版本到处都是它的资讯,官网良心自带简体中文,趁着热度我也来试试,顺便聊记一二. 关于Julia J ...

  10. redhat7查看系统版本 修改主机名

    在CentOS或RHEL中,有三种定义的主机名:静态的(static),瞬态的(transient),以及灵活的(pretty).“静态”主机名也称为内核主机名,是系统在启动时从 /etc/hostn ...