山区建小学

时间限制: 1 Sec  内存限制: 128 MB
提交: 17  解决: 5
[提交][状态][讨论版][命题人:quanxing]

题目描述

政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往。已知任意两个相邻的村庄之间的距离为di(为正整数),其中,0<i<m。为了提高山区的文化素质,政府又决定从m个村中选择n个村建小学(设0<n≤m<500)。请根据给定的m、n以及所有相邻村庄的距离,选择在哪些村庄建小学,才使得所有村到最近小学的距离总和最小,计算最小值。

 

输入

第1行为m和n,其间用空格间隔

第2行为(m-1) 个整数,依次表示从一端到另一端的相邻村庄的距离,整数之间以空格间隔。

例如:

10 3

2 4 6 5 2 4 3 1 3

表示在10个村庄建3所学校。第1个村庄与第2个村庄距离为2,第2个村庄与第3个村庄距离为4,第3个村庄与第4个村庄距离为6,...,第9个村庄到第10个村庄的距离为3。

输出

各村庄到最近学校的距离之和的最小值。

 

样例输入

10 2
3 1 3 1 1 1 1 1 3

样例输出

18

区间DP。f[n][m]表示1..n中建m个小学的最小花费。 
一个结论:如果要在i..j中选一个点使所有点到这个点的总距离最小,这个点一定在中点位置。训练指南上有证明,其实很简单,反证法,假设不是中间的点,左移或右移一个点,会发现造价升高。 山区建小学不是《信息学奥赛一本通第5版》的例题,是noi官方题库的题目。 
这题用动态规划来解决,这里需要一个辅助的数组dist,dist[i][j]表示在从i到j这一段区间建一所小学,i到j的村庄都到这个学校来上学的路程和。 
分析: 
这里采用之前讲到过的分析的方法来分析 
状态表达:f[i][j]表示前i个村庄建j所学校,到里那个村庄最近的学校上学的路程和。 
状态转移:
f[i][j]=min(f[i][j],f[k][j-1]+s[k+1][i]);
在前k个村庄造j-1个学校的最小和 + k+1到i个学校造一个学校的最小和

在前
详见代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int inf=;
int f[][];
int dis[][];//从i到j距离
int d[];
int s[][];
//s[管辖区起点][管辖区终点]=这片辖区内建一个学校,区内村庄到学校的距离和
int n,m;
int dist(int i,int j){
int x=;
int mid=(i+j)/;
for(int k=i;k<=j;k++)
x+=dis[k][mid];
return x;
} int main(){
scanf("%d%d",&m,&n);
int i,j,x;
for(i=;i<=m;i++){//从2开始,方便求各村庄间距离
scanf("%d",&x);
d[i]=d[i-]+x;
}
//
for(i=;i<=m;i++)
for(j=;j<=m;j++){
if(i==j)dis[i][j]=;
else dis[i][j]=dis[j][i]=abs(d[j]-d[i]);
}//初始化两两距离
//
for(i=;i<=m;i++)
for(j=;j<=m;j++)
s[i][j]=dist(i,j);
//计算一个管辖从i到j村庄的学校到这些村庄的距离和
//
for(i=;i<=m;i++)
for(j=;j<=m;j++)
f[i][j]=inf;
for(i=;i<=m;i++)f[i][i]=;
for(i=;i<=m;i++)f[i][]=s[][i];//只建一个学校的情况
//f初始化 /* //test
for(i=1;i<=m;i++)
for(j=1;j<=m;j++)
printf("%d ",s[i][j]);
*/
for(i=;i<=m;i++){//村庄
for(j=;j<=min(i,n);j++){//学校
for(int k=j-;k<=i-;k++){//枚举已有的学校管辖的范围
if(i!=j)f[i][j]=min(f[i][j],f[k][j-]+s[k+][i]);
}
}
}
printf("%d",f[m][n]); }

 

山区建小学(区间DP)的更多相关文章

  1. P4677 山区建小学|区间dp

    P4677 山区建小学 题目描述 政府在某山区修建了一条道路,恰好穿越总共nn个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di 为了提高山区 ...

  2. 【noi 2.6_7624】山区建小学(DP)

    题意:在m个村庄建n个小学,求所有村到最近小学的距离总的最小值. 解法:由于题目是求"离最近的学校",而不是前一个学校,所以枚举学校的具体位置不方便,可转化成区间(学校居区间中间) ...

  3. 【OpenJudge7624】【区间DP】山区建小学

    山区建小学 总时间限制: 1000ms 内存限制: 65536kB [描述] 政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两 ...

  4. #DP# ----- OpenJudge山区建小学

    没有记性.到DP不得不写博了,三天后又忘的干干净净.DP是啥 :-) 一道久到不能再久的题了. OpenJudge  7624:山区建小学 总时间限制: 1000ms     内存限制: 65536k ...

  5. 7624:山区建小学(划分dp)

    7624:山区建小学 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄 ...

  6. NOI题库7624 山区建小学(162:Post Office / IOI2000 POST OFFICE [input] )

    7624:山区建小学 Description 政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di(为 ...

  7. 山区建小学(区间dp+前缀和+预处理)

    [题目描述] 政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di(为正整数),其中,0 < i ...

  8. luogu P4677 山区建小学 |dp

    题目描述 政府在某山区修建了一条道路,恰好穿越总共nnn个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为did_idi​(为正整数),其中,0& ...

  9. openjudge7624 山区建小学

    描述 政府在某山区修建了一条道路,恰好穿越总共m个村庄的每个村庄一次,没有回路或交叉,任意两个村庄只能通过这条路来往.已知任意两个相邻的村庄之间的距离为di(为正整数),其中,0 < i < ...

随机推荐

  1. linux安装Zabbix监控

    源码包3.4.0下载  https://nchc.dl.sourceforge.net/project/zabbix/ZABBIX%20Latest%20Stable/3.4.0/zabbix-3.4 ...

  2. 服务器windows 2003 安装SQL 2000+SP4

    (在windows 2003安装SQL 2000,对于03系统是没有32位和64位之分的) (32位系统需要重启机器,64不需要) 在站点下载数据库 解压后有两个文件夹 首先安装SQL2000 第1步 ...

  3. ubuntu中如何添加IP

    编辑网卡配置文件vi /etc/network/interfaces 在配置文件下增加新的IP配置 之后重启网络/etc/init.d/networking restart

  4. showModalDialog改进版,包括Chrome下的特殊处理

    父页面: if(window.ActiveXObject){ //IE          $("#choose_entp").click(function(){           ...

  5. jsp中的basePath和path(绝对路径 相对路径)

    在JSP中的如果使用 "相对路径" 则有 可能会出现问题. 因为 网页中的 "相对路径" , 他是相对于 "URL请求的地址" 去寻找资源. ...

  6. 解决noSession问题

    1.问题描述:对于根据id查询时,在dao通过load方式查询对象时,加载页面会报 noSession异常. 严重: Servlet.service() for servlet [springDisp ...

  7. 【bzoj3747】Kinoman[POI2015](线段树)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3747 对于这种题,考虑固定区间的右端点为r,设区间左端点为l能取得的好看值总和为a[l] ...

  8. HDU 5183 Negative and Positive (NP) (hashmap+YY)

    学到了以邻接表方式建立的hashmap 题意:给你一串数a和一个数k,都有正有负,问知否能找到一对数(i,j)(i<=j)保证a [i] - a [i+1] + a [i+2] - a [i+3 ...

  9. QT QMimeData类

    http://blog.csdn.net/xie376450483/article/details/5863810 QMimeData类提为数据提供一个容器,用来记录关于MIME类型数据的信息 QMi ...

  10. Spring初学之bean之间的关系和bean的作用域

    一.bean之间的关系 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="h ...