python数据分析之:时间序列二
将Timestamp转换为Period
通过使用to_period方法,可以将由时间戳索引的Series和DataFrame对象转换为以时期索引
rng=pd.date_range('1/1/2000',periods=3,freq='M')
ts=Series(randn(3),index=rng)
print(ts)
pts2=ts.to_period(freq='M')
print(pts2)
结果如下:ts是每个月最后一天的日期,pts2则是体现的是以月为周期的日子
2000-01-31 0.990097
2000-02-29 0.439761
2000-03-31 -3.395317
Freq: M, dtype: float64
2000-01 0.990097
2000-02 0.439761
2000-03 -3.395317
Freq: M, dtype: float64
如果要转换回时间戳,则可以使用pts2.to_timestamp(how='end')的方法
2000-01-31 -0.489228
2000-02-29 -1.583283
2000-03-31 -2.414735
Freq: M, dtype: float64
重采样及频率转换
将高频率数据转换为低频率称为降采样,而将低频率数据转换为高频率称为升采样。pandas中的resample方法就可以进行这种频率转换
rng=pd.date_range('1/1/2000',periods=50,freq='D')
ts=Series(randn(50),index=rng)
print(ts.resample('M').mean())
运行结果如下,在这里ts是以天级的数据,但是通过resample(‘M’)转换为月度的数据,且对属于同一个月的数据进行求平均的计算。得到的就是每个月的平均值
2000-01-31 -0.276265
2000-02-29 -0.052926
Freq: M, dtype: float64
降采样:
在降采样的时候,需要考虑两样东西:
1 各区间哪边是闭合的
2 如何标记各个聚合面元,用区间的开头还是末尾
来看如下代码:
rng=pd.date_range('1/1/2000',periods=12,freq='T')
ts=Series(np.arange(12),index=rng)
print(ts)
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
2000-01-01 00:09:00 9
2000-01-01 00:10:00 10
2000-01-01 00:11:00 11
print(ts.resample('5min', closed='left').sum())
左闭合的时候统计是以00:00:00为开始的5分钟周期
2000-01-01 00:00:00 10
2000-01-01 00:05:00 35
2000-01-01 00:10:00 21
print(ts.resample('5min',closed='right').sum())
右闭合的时候统计是以00:00:00为结束的5分钟周期,因为时间提前到了1999-12-31 23:55:00这个时候。
1999-12-31 23:55:00 0
2000-01-01 00:00:00 15
2000-01-01 00:05:00 40
2000-01-01 00:10:00 11
因此左闭合还是右闭合取决与时间的开始和结束
在金融领域中有一种无所不在的时间序列聚合方式,即计算各面元的4个值,第一个值open:开盘,最后一个值close:收盘,最大值high:最高,最小值low:最低
ts.resample('5min', closed='left').ohlc()
open high low close
2000-01-01 00:00:00 0 4 0 4
2000-01-01 00:05:00 5 9 5 9
2000-01-01 00:10:00 10 11 10 11
python数据分析之:时间序列二的更多相关文章
- Python数据分析--Pandas知识点(二)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...
- python数据分析Numpy(二)
Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab ...
- Python数据分析教程(二):Pandas
Pandas导入 Pandas是Python第三方库,提供高性能易用数据类型和分析工具 Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用 两个数据类型:Series, Da ...
- Python数据分析 之时间序列基础
1. 时间序列基础 import numpy as np import pandas as pd np.random.seed(12345) import matplotlib.pyplot as p ...
- [读书笔记] Python 数据分析 (十二)高级NumPy
da array: 一个快速而灵活的同构多维大数据集容器,可以利用这种数组对整块的数据进行一些数学运算 数据指针,系统内存的一部分 数据类型 data type/dtype 指示数据大小的元组 str ...
- Python数据分析--Pandas知识点(三)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...
- Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...
- 小白学 Python 数据分析(13):Pandas (十二)数据表拼接
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(17):Matplotlib(二)基础操作
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 【Python数据分析】Python3操作Excel(二) 一些问题的解决与优化
继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛 ...
随机推荐
- Laravel之视图和Blade模板引擎
一.视图 1.视图文件存放在resources/views目录2.视图载入及传参 return view('greeting', ['name' => 'James']); 还可以通过with ...
- Jscript 随记
1.Jscript 不能用来编写独立执行的应用程序,而且没有对读写文件的内置支持. 2.注意,语句块中的原始语句以分号结束.但语句块本身并不以分号结束. 3.注意,Jscript 与 C++ 以及其它 ...
- 已加载“C:\Windows\SysWOW64\ntdll.dll”。无法查找或打开 PDB 文件。
“Win32Project3.exe”(Win32): 已加载“D:\software\VS2013\VS2013 文档\Win32Project3\Debug\Win32Project3.exe”. ...
- git个人使用总结(命令版)
一.基础命令 快照类操作:add.status.diff.commit.reset.rm.mv 分支类基本操作:branch.checkout.log.stash 分享及更新项目基本操作:pull.p ...
- 优化MyDb
import pymysqlclass MyDb(object): #新式类 def __del__(self):#析构函数 self.cur.close() self.coon.close() pr ...
- window.name实现跨域数据传输
偶然间碰到个问题,通过JS给window.name赋值数组情况下,在firefox与chrome下会转换为字符串类型,在IE11下则显示正常.不说了,上图(firefox下): 代码: <scr ...
- MQTT--入门
一.简述 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种基于发布/订阅(publish/subscribe)模式的“轻量级”通讯协议 ...
- 利用nginx搭建tomcat集群
1.tomcat集群 利用nginx对请求进行分流,将请求平均的分给不同的tomcat去处理,减少单个tomcat的负载量,提高tomcat的响应速度. 2.创建多个tomcat服务器(同一个服务器上 ...
- sqlserver修改表主键自增
alter table tname add id int identity(1,1)
- 在oracle11g中配置多个DataGuard物理备机
>> from zhuhaiqing.info 主机配置 alter system set DB_UNIQUE_NAME='starboss' scope=spfile; alter sy ...