pandas:数据分析
一、介绍
pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的。
1.主要功能
具备对其功能的数据结构DataFrame、Series
集成时间序列功能
提供丰富的数学运算和操作
灵活处理缺失数据
2.安装方法
pip install pandas
3.引用方法
import pandas as pd
二、Series
Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成。
获取值数组和索引数组:values属性和index属性
Series比较像列表(数组)和字典的结合体。
创建方式:
pd.Series([4,7,-5,3])
pd.Series([4,7,-5,3],index=['a','b','c','d'])
pd.Series({'a':1, 'b':2})
pd.Series(0, index=['a','b','c','d’])
Series支持字典的特性(标签):
- 从字典创建Series:Series(dic),
- in运算:’a’ in sr、for x in sr
- 键索引:sr['a'], sr[['a', 'b', 'd']]
- 键切片:sr['a':'c']
- 其他函数:get('a', default=0)等
In [12]: s = pd.Series(0,index=['a','b','c','d']) In [13]: s.a
Out[13]: 0 In [14]: v = pd.Series({'a':1,'b':2}) In [15]: v.a
Out[15]: 1 In [16]: v.b
Out[16]: 2 In [17]: v[0]
Out[17]: 1 In [18]: s*2
Out[18]:
a 0
b 0
c 0
d 0
dtype: int64 In [19]: v*2
Out[19]:
a 2
b 4
dtype: int64
三、整数索引
整数索引的pandas对象往往会使新手抓狂。
例:
- sr = np.Series(np.arange(4.))
- sr[-1]
如果索引是整数类型,则根据整数进行数据操作时总是面向标签的。
- loc属性 以标签解释
- iloc属性 以下标解释
四、Series数据对齐
pandas在运算时,会按索引进行对齐然后计算。如果存在不同的索引,则结果的索引是两个操作数索引的并集。 例:
sr1 = pd.Series([12,23,34], index=['c','a','d'])
sr2 = pd.Series([11,20,10], index=['d','c','a',])
sr1+sr2
sr3 = pd.Series([11,20,10,14], index=['d','c','a','b'])
sr1+sr3 如何在两个Series对象相加时将缺失值设为0?
sr1.add(sr2, fill_value=0)
灵活的算术方法:add, sub, div, mul
五、Series缺失数据
1、缺失数据:使用NaN(Not a Number)来表示缺失数据。其值等于np.nan。内置的None值也会被当做NaN处理。
2、处理缺失数据的相关方法:
- dropna() 过滤掉值为NaN的行
- fillna() 填充缺失数据
- isnull() 返回布尔数组,缺失值对应为True
- notnull() 返回布尔数组,缺失值对应为False
3、过滤缺失数据:sr.dropna() 或 sr[data.notnull()]
4、填充缺失数据:fillna(0)
六、DataFrame
DataFrame是一个表格型的数据结构,含有一组有序的列。
DataFrame可以被看做是由Series组成的字典,并且共用一个索引。
创建方式:
- pd.DataFrame({'one':[1,2,3,4],'two':[4,3,2,1]})
- pd.DataFrame({'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([1,2,3,4],index=['b','a','c','d'])})
- ……
csv文件读取与写入:
- df.read_csv('E:\算法\day110 Numpy、Pandas模块\601318.csv')
- df.to_csv()
七、DataFrame查看数据
查看数据常用属性及方法:
index 获取索引
T 转置
columns 获取列索引
values 获取值数组
describe() 获取快速统计 DataFrame各列name属性:列名
rename(columns={})
八、DataFrame索引和切片
DataFrame使用索引切片:
方法1:两个中括号,先取列再取行。 df['A'][0]
方法2(推荐):使用loc/iloc属性,一个中括号,逗号隔开,先取行再取列。
loc属性:解释为标签
iloc属性:解释为下标
向DataFrame对象中写入值时只使用方法2
行/列索引部分可以是常规索引、切片、布尔值索引、花式索引任意搭配。(注意:两部分都是花式索引时结果可能与预料的不同)
通过标签获取:
df['A']
df[['A', 'B']]
df['A'][0]
df[0:10][['A', 'C']]
df.loc[:,['A','B']] #行是所有的行,列取是A和B的
df.loc[:,'A':'C']
df.loc[0,'A']
df.loc[0:10,['A','C']] 通过位置获取:
df.iloc[3]
df.iloc[3,3]
df.iloc[0:3,4:6]
df.iloc[1:5,:]
df.iloc[[1,2,4],[0,3]]、 通过布尔值过滤:
df[df['A']>0]
df[df['A'].isin([1,3,5])]
df[df<0] = 0
九、DataFrame数据对齐与缺失数据
DataFrame对象在运算时,同样会进行数据对齐,行索引与列索引分别对齐。
结果的行索引与列索引分别为两个操作数的行索引与列索引的并集。
DataFrame处理缺失数据的相关方法:
- dropna(axis=0,where=‘any’,…) 过滤掉值为NaN的行
- fillna() 填充缺失数据
- isnull() 返回布尔数组,缺失值对应为True
- notnull() 返回布尔数组,缺失值对应为Fals
pandas:数据分析的更多相关文章
- 动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题
动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3 ...
- python中pandas数据分析基础3(数据索引、数据分组与分组运算、数据离散化、数据合并)
//2019.07.19/20 python中pandas数据分析基础(数据重塑与轴向转化.数据分组与分组运算.离散化处理.多数据文件合并操作) 3.1 数据重塑与轴向转换1.层次化索引使得一个轴上拥 ...
- pyhton pandas数据分析基础入门(一文看懂pandas)
//2019.07.17 pyhton中pandas数据分析基础入门(一文看懂pandas), 教你迅速入门pandas数据分析模块(后面附有入门完整代码,可以直接拷贝运行,含有详细的代码注释,可以轻 ...
- pyhton中pandas数据分析模块快速入门(非常容易懂)
//2019.07.16python中pandas模块应用1.pandas是python进行数据分析的数据分析库,它提供了对于大量数据进行分析的函数库和各种方法,它的官网是http://pandas. ...
- Pandas数据分析python环境说明文档
1. 要求windows系统 2. pycharm编程环境并要求配置好python3.x环境 pycharm可在官网下载,下面是链接. https://www.jetbrains.com/zh/pyc ...
- PANDAS 数据分析初学者教程
Pandas 初学者教程 2018-05-19 六尺巷人 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包.它不仅提供了很多方法,使得数据处理非常 ...
- pandas数据分析案例
1.数据分析步骤 ''' 数据分析步骤: 1.先加载数据 pandas.read_cvs("path") 2.查看数据详情 df.info() ,df.describe() ,df ...
- pandas数据分析小知识点(一)
最近工作上,小爬经常需要用python做一些关于excel数据分析的事情,显然,从性能和拓展性的角度出发,使用pandas.numpy是比vba更好的选择.因为pandas能提供诸如SQL的很多查找. ...
- (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...
- Pandas 数据分析——超好用的 Groupby 详解
在日常的数据分析中,经常需要将数据根据某个(多个)字段划分为不同的群体(group)进行分析,如电商领域将全国的总销售额根据省份进行划分,分析各省销售额的变化情况,社交领域将用户根据画像(性别.年龄) ...
随机推荐
- makefile基本语法
多文件编程的小例子功能:在main.c里面调用其他两个源文件里面的函数,然后输出字符串. 1.main.c #include"mytool1.h"#include" ...
- [matlab]Monte Carlo模拟学习笔记
理论基础:大数定理,当频数足够多时,频率可以逼近概率,从而依靠概率与$\pi$的关系,求出$\pi$ 所以,rand在Monte Carlo中是必不可少的,必须保证测试数据的随机性. 用蒙特卡洛方法进 ...
- Flask15 远程开发环境搭建、安装虚拟机、导入镜像文件、创建开发环境、pycharm和远程开发环境协同工作
1 安装VM虚拟机 待更新... 2 导入镜像文件 待更新... 3 启动虚拟机 4 远程连接虚拟机 4.1 安装xShell软件 待更新... 4.2 创建一个新的连接 4.2.1 在虚拟机中获取虚 ...
- MySql获取记录的名次
在oracle中有rownum之类的东西表示记录的名次,那么在MySql中怎么获取名次呢? as rank ) B 获取的rank就是名次了 user_id rank 134762 122139 ...
- Java Learning 000 搭建开发环境
Java Learning 000 搭建开发环境 你需要两个软件: * JDK (Java Develop Kit :Java开发工具包) * eclipse (eclipse 集成开发环境软件) 安 ...
- 10、Perl5中19个最重要的文件系统工具
转载:http://www.cnblogs.com/nkwy2012/p/6027157.html 在写脚本处理文件系统时,经常需要加载很多模块.其中好多有用函数分散在各种不同的模块中.它们有些是Pe ...
- 8.bwapp亲测xxe漏洞
这几天在学习XXE漏洞,这里用靶机bwapp来练习一下这个漏洞,重在学习 xxe漏洞主要针对webservice危险的引用的外部实体并且未对外部实体进行敏感字符的过滤, 从而可以造成命令执行,目录遍历 ...
- vue中v-if 与v-show的区别
v-if vs v-show v-if 是“真正的”条件渲染,因为它会确保在切换过程中条件块内的事件监听器和子组件适当地被销毁和重建. v-if 也是惰性的:如果在初始渲染时条件为假,则什么也不做—— ...
- Python:列表也能拆包?
前几天,微信学习群里有个小伙伴在看书时遇到了这样一个问题,在群里提问,看下图: 这是常用的 matplotlib 库,只是一般我们调用 plot 方法绘图时,不会去关心它的返回值.然而 plt1, = ...
- cinder服务状态up/down的源码梳理
基于ocata版本的,源码梳理 1)用户输入cinder service-list命令行,查看cinder服务的状态时,cinder的入口函数为cinder/api/contrib/services. ...