hdu 4679 树的直径
/*
题目大意:给n个点n-1条边的树,求删除哪条边时两个树中最大的直径与边权的乘积最小。
树的直径(Diameter)是指树上的最长简单路。
直径的求法:两遍BFS (or DFS)
若删除的边不是直径上的那么花费为max_len*wi
若删除的边是直径上的那么花费为max(dp[u][2],dp[v][2])*wi
*/
#pragma comment(linker, "/STACK:16777216")
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std; const int maxn=;
int dep[maxn],ans[maxn],father[maxn],max_len;//ans下标对应边的编号
int dp[maxn][];//j=0存i节点的到子树中的最长路,j=1存次长路,j=2存直径
bool vis[maxn];//标记是否为直径上的点
inline int max(int a,int b){return a>b?a:b;}
struct node
{
int id,w,v;
node(int id=,int w=,int v=):id(id),w(w),v(v){}
};
vector<node> f[maxn]; void dfs_dep(int u,int pre)//找最长路
{
for(int i=;i<f[u].size();i++)
{
int v=f[u][i].v;
if(v==pre) continue;
dep[v]=dep[u]+;
father[v]=u;
dfs_dep(v,u);
}
return ;
} void dfs(int u,int pre)
{
dp[u][]=dp[u][]=dp[u][]=;
for(int i=;i<f[u].size();i++)
{
int v=f[u][i].v;
if(v==pre) continue;
dfs(v,u);
int temp=dp[v][]+;
if(temp>dp[u][])
{
dp[u][]=dp[u][];dp[u][]=temp;
}
else if(temp>dp[u][])
dp[u][]=temp;
dp[u][]=max(dp[u][],dp[v][]);//u在子树直径边上与不再直径边上
}
dp[u][]=max(dp[u][],dp[u][]+dp[u][]);//u在子树直径中与不再直径中
} void solve(int u,int pre)
{
for(int i=;i<f[u].size();i++)
{
int v=f[u][i].v,id=f[u][i].id,w=f[u][i].w;
if(v==pre) continue;
solve(v,u);
//在树的直径上
if(vis[u] && vis[v])
ans[id]=max(ans[id],w*dp[v][]);
else ans[id]=w*max_len;
}
} int main()
{
int t,i,n,icase=,a,b,w;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=;i<=n;i++) f[i].clear();
for(i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&w);
f[a].push_back(node(i,w,b));
f[b].push_back(node(i,w,a));
}
int st,ed=,temp;
dfs_dep(ed,-);
for(i=;i<=n;i++)
if(dep[ed]<dep[i]) ed=i;
dep[st=ed]=;
dfs_dep(st,-);
ed=st;
for(i=;i<=n;i++)
if(dep[ed]<dep[i]) ed=i;
max_len=dep[ed];
memset(vis,,sizeof(vis));
father[st]=-;temp=ed;
while(father[temp]!=-)
vis[temp]=true,temp=father[temp];
memset(ans,,sizeof(ans));
dfs(st,-);solve(st,-);
dfs(ed,-);solve(ed,-);
temp=;
for(i=;i<n;i++)
if(ans[i]<ans[temp]) temp=i;
printf("Case #%d: %d\n",++icase,temp);
}
return ;
}
hdu 4679 树的直径的更多相关文章
- hdu 3721 树的直径
思路:枚举+树的直径 #include<iostream> #include<cstring> #include<cstdio> #include<algor ...
- hdu 4514(树的直径+并查集)
湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
- Warm up HDU - 4612 树的直径
题意:给出n个点和m条边的无向图,存在重边,问加一条边以后,剩下的桥的数量最少为多少. 题解: 你把这个无向图缩点后会得到一个只由桥来连接的图(可以说这个图中的所有边都是桥,相当于一棵树),然后我们只 ...
- hdu 4607 树的直径
思路:利用dfs遍历整棵树,找出最长子树与次长子树,两者的和最大就是直径. 若k值小于直径就输出k-1,否则输出(k-d-1)*2+d; #include<iostream> #inclu ...
- Warm up HDU - 4612( 树的直径 边双连通分量)
求在图中新建一条边后 剩下的最少的桥的数量..先tarjan求桥的数量..然后缩点..以连通分量为点建图 bfs求直径 最后用桥的数量减去直径即为答案 bfs求直径 https://www.cnb ...
- hdu 4679 树状dp
思路:我们其实只需要枚举每条边,求得最小值就行了. 先dfs算出每个节点作为根时,其子树的最长路径,以及进过该节点的最长,次长,第三长路径. 然后在次dfs枚举求出切断某条边,求出这条边的两个端点为子 ...
- hdu 4679 Terrorist’s destroy 树的直径+dp
题意:给你一棵树,每条边都有值W,然后问你去掉一条边,令val = w*max(两颗新树的直径),求val最小值~ 做法,先求树的直径,然后算出直径上每个点的最长枝条长度.这样对于每一条边,假如是枝条 ...
- hdu 4607 Park Visit 求树的直径
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 题目大意:给你n个点,n-1条边,将图连成一棵生成树,问你从任意点为起点,走k(k<=n) ...
- 【HDU 4612 Warm up】BCC 树的直径
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4612 题意:一个包含n个节点m条边的无向连通图(无自环,可能有重边).求添加一条边后最少剩余的桥的数 ...
随机推荐
- Python函数及参数
## 函数 - 函数是代码的一种组织形式,一般一个函数完成一个特定功能 - 函数需要先定义后使用 - 函数的定义 def func_name(参数): func_body ... return fun ...
- 1014-31-首页12-显示weibo未读数--后台运行---定时器
/** * 当app进入后台时调用 */- (void)applicationDidEnterBackground:(UIApplication *)application{ /** ...
- Android 使用RxJava实现一个发布/订阅事件总线
1.简单介绍 1.1.发布/订阅事件主要用于网络请求的回调. 事件总线可以使Android各组件之间的通信变得简单,而且可以解耦. 其实RxJava实现事件总线和EventBus比较类似,他们都依据与 ...
- 16,Flask-Migrate
终于到了Flask-Migrate,之前在学习Flask-SQLAlchemy的时候,Flask支持 makemigration / migrate 吗? 答案在这里该诉你,如果你同时拥有两个三方组件 ...
- 1082: [SCOI2005]栅栏
链接 思路 二分+搜索+剪枝. 首先二分一个答案,表示最多可以切出x块.(一个结论:切出的一定是从较小的前x块.如果一个木材可以满足很多个需要的木材,那么切出最小的,就意味着以后再选时的机会更多.) ...
- asp.net 常用几种下载方式
protected void Button1_Click(object sender, EventArgs e) { /* 微软为Response对象提供了一个新的方法TransmitFile来解决使 ...
- 《Cracking the Coding Interview》——第9章:递归和动态规划——题目11
2014-03-21 20:20 题目:给定一个只包含‘0’.‘1’.‘|’.‘&’.‘^’的布尔表达式,和一个期望的结果(0或者1).如果允许你用自由地给这个表达式加括号来控制运算的顺序,问 ...
- Lazarus教程 中文版后续给出
市面上有介绍Delphi的书籍(近来Delphi的书也是越来越少了),但没有一本系统的介绍Lazarus的书,这本书是网上的仅有的一本Lazarus教程,目前全部是英文,不过我已经着手开始翻译,争取尽 ...
- JMeter学习笔记(七) 导出文件接口测试
导出文件接口,其实跟下载文件接口的测试类似,主要就是执行接口导出文件后保存到本地. 下载文件接口测试,参考文档:https://www.cnblogs.com/xiaoyu2018/p/1017830 ...
- 使用cloudbase-init初始化windows虚拟机
CloudBase-init简介 cloudbase-init 是 Windows 和其他系统的云初始化程序,可以设置主机名.创建用户.设置静态ip.设置密码等.对应的linux初始化程序是cloud ...