题意:有以个 有 N 个节点的树形地图,问在这些顶点上最少建多少个电话杆,可以使得所有顶点被覆盖到,一个节点如果建立了电话杆,那么和它直接相连的顶点也会被覆盖到。

分析:用最少的点覆盖所有的点,即为求最少支配集。  可以用树形DP。

①  dp[r][0] += min(dp[i][0],dp[i][1],dp[i][2])    dp[r][0]表示在自 r 顶点自身建, 以 r 为根节点的树所需要的最少覆盖数。
       ②  dp[r][1] += min(dp[i][0],dp[i][1])                dp[r][1]表示在r 的子节点建,     以 r 为根节点的树所需要的最少覆盖数。
       ③  dp[r][2] += min(dp[i][0],dp[i][1])                dp[r][2]表示在r 的父节点建,     以 r 为根节点的数所需要的最少覆盖数。

对于dp[i][1],要考虑全面,也就是说:必须要有一个孩子建塔,才能保证i被覆盖(Min=sum(min(dp[v][0]-dp[i][1])),也就是当所有孩子的dp[v][0]>dp[v][i]时,Min表示他们差值最小的那个差值)。

所以方程是dp[i][1]+=min(dp[v][0],dp[1])(至少存在一个孩子的dp[v][0]<=dp[v][1],否则要dp[i][1]+=Min);

AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define M 10007
#define inf 0x3f3f3f
using namespace std;
int dp[M][];
int head[M],k,n;
bool vis[M]; struct sa{
int v,next;
}edg[M*]; void addedge(int u,int v)
{
edg[k].v=v;
edg[k].next=head[u];
head[u]=k++;
} void dfs(int key)
{
bool flag=true;
vis[key]=false;
dp[key][]=;
dp[key][]=dp[key][]=;
int minn=inf;
for(int i=head[key];i!=-;i=edg[i].next)
{
int v=edg[i].v;
if(vis[v])
{
dfs(v);
dp[key][]+=min(dp[v][],min(dp[v][],dp[v][]));
dp[key][]+=min(dp[v][],dp[v][]);
if(dp[v][]<=dp[v][])
{
flag=false;
dp[key][]+=dp[v][];
}
else
{
dp[key][]+=dp[v][];
minn=min(minn,dp[v][]-dp[v][]);
}
}
}
if(flag)
dp[key][]+=minn;
} int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF)
{
memset(vis,true,sizeof(vis));
memset(head,-,sizeof(head));
k=;
int a,b;
while(--n)
{
scanf("%d%d",&a,&b);
addedge(a,b);
addedge(b,a);
}
dfs();
printf("%d\n",min(dp[][],dp[][]));
}
return ;
}

POJ 3659 Cell Phone Network 最小支配集模板题(树形dp)的更多相关文章

  1. POJ-3659-最小支配集裸题/树形dp

    Cell Phone Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7127   Accepted: 254 ...

  2. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  3. POJ 3659 Cell Phone Network(树的最小支配集)(贪心)

    Cell Phone Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6781   Accepted: 242 ...

  4. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  5. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  6. POJ - 3659 Cell Phone Network(树形dp---树的最小点支配集)

    题意:有N个点,N-1条边,任意两点可达,由此形成了一棵树.选取一个点a,它可覆盖自己以及与自己相邻的点,选取尽量少的点a,使得树中所有点都被覆盖,即求树的最小点支配集. 分析: 1.对于每一个点cu ...

  7. POJ 3659 Cell phone Network (树的最小点覆盖, 树形DP)

    题意: 给定一棵树,每个点可以覆盖自己和相邻的点, 求最少要多少个点覆盖图 #include <cstdio> #include <cstring> #include < ...

  8. POJ 3659 Cell Phone Network (树dp)

    题目链接:http://poj.org/problem?id=3659 给你一个树形图,一个点可以覆盖他周围连接的点,让你用最少的点覆盖所有的点. dp[i][0]表示用i点来覆盖,dp[i][1]表 ...

  9. poj 3041 Asteroids (最大匹配最小顶点覆盖——匈牙利模板题)

    http://poj.org/problem?id=3041 Asteroids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions ...

随机推荐

  1. eclipse格式化代码模板

    <?xml version="1.0" encoding="UTF-8" standalone="no"?> <profi ...

  2. Blender 基础 骨架 01

    Blender 基础 骨架 01 我使用的Blender版本:Blender V 2.77 前言 本讲介绍: 骨架的基本使用方式. 骨架是角色动画里面最常使用的元素,它可以准确控制一个模型的变形,尤其 ...

  3. HTML和CSS入门教程

    慕课网上面的HTML+CSS基础课程感觉非常适合入门.

  4. Django框架 之 模板语言

    Django框架 之 模板语言 浏览目录 标签 过滤器 一.标签 Tags 1.普通变量 普通变量用{{ }} 变量名由数字.字母.下划线组成 点.在模板语言中用来获取对象相应的属性值 示例: 1 2 ...

  5. NPOI操作之一EXCEL数据导入数据库

    一.概要 前面讲到NPOI操作EXCEL导出功能,下面讲下从EXCEL里获取数据添加进数据库. 二.代码 HSSFWorkbook hssfworkbook; public void ExcelDat ...

  6. JButton ButtonClickTest

    package com.example.test; import java.awt.EventQueue; import javax.swing.JFrame; import javax.swing. ...

  7. CodeForces 384E Propagating tree (线段树+dfs)

    题意:题意很简单么,给定n个点,m个询问的无向树(1为根),每个点的权值,有两种操作, 第一种:1 x v,表示把 x 结点加上v,然后把 x 的的子结点加上 -v,再把 x 的子结点的子结点加上 - ...

  8. margin,CSS边距重叠

    CSS外边距叠加就是margin-collapse,边距合并指的是,当两个垂直外边距相遇时,它们将形成一个外边距,水平边 距永远不会重合. 重叠结果计算规则: 两个相邻的外边距都是正数时,折叠结果是它 ...

  9. Java50道经典习题-程序48 数字加密

    题目:某个公司采用公用电话传递数据,数据是四位的整数,在传递过程中是加密的,加密规则如下:每位数字都加上5,然后用和除以10的余数代替该数字,再将第一位和第四位交换,第二位和第三位交换.分析:例如原始 ...

  10. vs code进行c/c++开发

    vs code是微软公司开发的跨平台编辑器,丰富的插件功能可以满足各种编程语言的编码,编译和调试.由于vs code本身只是一个编辑器,所以你需要准备编译工具链.本文针对的是windows系统,我这里 ...