随机拆分,简直机智。

关于过程可以看http://wenku.baidu.com/link?url=JPlP8watmyGVDdjgiLpcytC0lazh4Leg3s53WIx1_Pp_Y6DJTC8QkZZqmiDIxvgFePUzFJ1KF1G5xVVAoUZpxdw9GN-S46eVeiJ6Q-zXdei

看完后,觉得随机生成数然后和n计算gcd,可以将随机的次数根号一下。思想很叼。

对于里面说的birthday trick,在执行次数上我怎么看都只能减一半。只是把平均分布,变成了靠近0的的分布。

不过怎么说,这个好像是大家都公认比较靠谱的。 所以,我就勉强相信了。

/*****************************
大整数拆分模板(long long范围内)
调用Divide(n,222);
返回的结果在divsor中,因子最小值为dmi
注意:复杂度为n^(1/4),多次调用初始化dcnt,dmi
*****************************/ #define INF 1e18 long long divsor[];
int dcnt=;
long long dmi=INF; //输入一个long long 范围内的素数,是素数返回true,否则返回false。定义检测次数TIMES,错误率为(1/4)^TIMES
#define TIMES 10 long long GetRandom(long long n)
{
//cout<<RAND_MAX<<endl;
long long num = (((unsigned long long)rand() + )*rand())%n;
return num+;
} long long Mod_Mul(long long a,long long b,long long mod)
{
long long msum=;
while(b)
{
if(b&) msum = (msum+a)%mod;
b>>=;
a = (a+a)%mod;
}
return msum;
} long long Quk_Mul(long long a,long long b,long long mod)
{
long long qsum=;
while(b)
{
if(b&) qsum=Mod_Mul(qsum,a,mod);
b>>=;
a=Mod_Mul(a,a,mod);
}
return qsum;
} bool Miller_Rabin(long long n)
{
if(n==||n==||n==||n==||n==) return true;
if(n==||n%==||n%==||n%==||n%==||n%==) return false;
int div2=;
long long tn=n-;
while( !(tn%) )
{
div2++;
tn/=;
}
for(int tt=;tt<TIMES;tt++)
{
long long x=GetRandom(n-); //随机得到[1,n-1]
if(x==) continue;
x=Quk_Mul(x,tn,n);
long long pre=x;
for(int j=;j<div2;j++)
{
x = Mod_Mul(x, x, n);
if(x==&&pre!=&&pre!=n-) return false;
pre=x;
}
if(x!=) return false;
}
return true;
} long long gcd(long long a,long long b)
{
if(b==) return a;
return gcd(b,a%b);
} long long pollard_rho(long long dn,long long dc)
{
long long x,y,d,i=,k=;
x = GetRandom(dn-);
y = x;
while()
{
i++;
x = (Mod_Mul(x, x, dn) + dc)%dn;
d = gcd( y-x , dn );
if( < d && d < dn )
return d;
if( y==x ) return dn;
if( i==k )
{
y=x;
k <<= ;
}
}
} void Divide(long long dn,int dk)
{
if(dn==) return ;
if( Miller_Rabin(dn) == true )
{
divsor[dcnt++]=dn;
dmi = min(dmi,dn);
return ;
}
long long dtmp=dn;
while(dtmp>=dn) dtmp = pollard_rho(dtmp,dk--);//随机寻找dn的因子,dtmp
Divide(dtmp, dk);
Divide(dn/dtmp,dk);
} /*
int main() {
int T;
cin>>T;
while(T--)
{
long long n;
cin>>n;
if( Miller_Rabin(n) ) printf("Prime\n");
else
{
dmi=INF;
dcnt=0;
Divide(n,222);
cout<<dmi<<endl;
}
}
return 0;
}
*/

Pollard-Rho大整数拆分模板的更多相关文章

  1. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  2. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  3. 整数(质因子)分解(Pollard rho大整数分解)

    整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...

  4. HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...

  5. Pollard Rho大质数分解学习笔记

    目录 问题 流程 代码 生日悖论 end 问题 给定n,要求对n质因数分解 普通的试除法已经不能应用于大整数了,我们需要更快的算法 流程 大概就是找出\(n=c*d\) 如果\(c\)是素数,结束,不 ...

  6. C++ BigInteger 大整数类模板(转)

    #include <deque> #include <vector> #include <iostream> #include <string> #in ...

  7. C++大整数类模板

    参考 :http://172.21.85.56/oj/resource/reportdetail?report_id=1678 支持 =.abs().pow().+=.-= *=./=.%=.+.-. ...

  8. poj2389-Bull Math(大整数乘法)

    一,题意: 大整数乘法模板题二,思路: 1,模拟乘法(注意"逢十进一") 2,倒序输出(注意首位0不输出) 三,步骤: 如:555 x 35 = 19425  5 5 5  5 5 ...

  9. OpenJudge 2980 大整数乘法

    链接地址:http://bailian.openjudge.cn/practice/2980/ 题目: 总时间限制: 1000ms 内存限制: 65536kB 描述 求两个不超过200位的非负整数的积 ...

随机推荐

  1. TP5使用PHPMAILER发送邮件

    TP使用PHPMAILER发送邮件 1.申请一个SMTP服务的邮箱. 我申请的是smtp.163.com的服务,注意SMTP服务密码不是登陆密码,需要单独设置 2.下载phpmailer类库文件htt ...

  2. vim 注释取消注释多行

    按下ctrl+v选中多行,按大写I(必须是大写的I)进入编辑模式,输入注释符号如#,最后按下esc退出就完成了 取消注释一样按下ctrl+v选中,按d删除

  3. Java千百问_03基本的语法(005)_二进制是如何做位运算的

    点击进入_很多其它_Java千百问 二进制是如何做位运算的 程序中的全部数在计算机内存中都是以二进制的形式储存的.位运算说白了,就是直接对整数在内存中的二进制位进行操作. 其它运算符看这里:java种 ...

  4. MSSQL站库分离情况的渗透思路

    本文转自:http://bbs.blackbap.org/thread-6203-1-2.html 1. 服务器属内网环境,站库分离,通过web.config找到数据库服务库SA帐号密码,成功添加用户 ...

  5. 已加载“C:\Windows\SysWOW64\ntdll.dll”。无法查找或打开 PDB 文件。

    “Win32Project3.exe”(Win32): 已加载“D:\software\VS2013\VS2013 文档\Win32Project3\Debug\Win32Project3.exe”. ...

  6. 可移动磁盘显示0kb打不开怎么办

      移动硬盘.U盘打不开怎么办 为了方便共享,大多数人都购买了移动硬盘.那么如果有一天,发现移动硬盘打不开了,怎么办?下面为大家介绍移动硬盘打不开的解决方法. 未格式化故障 第一步:双击盘符出现未格式 ...

  7. vue-router push

    //push 方法一 对象 // this.$router.push({path:'HelloWorld2'}); //push 方法二 命名的路由 // this.$router.push({nam ...

  8. 【Python数据分析】

    索引对象的其他功能 ①更换索引 ②对齐 ③删除 一.更换索引 我们已经知道,数据结构一旦声明,index对象就不能改变 事实上,我们重新定义索引之后,我们就能够用现有的数据结构生成一个新的数据机构 p ...

  9. Bmob实现android云端存储

    代码地址如下:http://www.demodashi.com/demo/12547.html 前言 一直很困惑,android到底能不能将本地数据传到一个公共的云端,让云端实现数据库功能,这样的话, ...

  10. Android 使用SwipeBackLayout实现滑动返回上一级页面——实战来袭

    我们知道.APP在设计上习惯性的把返回button放在屏幕的左上角,那么,在非常多时候(尤其是大屏幕手机),操作改返回button,就会有诸多不便了.为了更加方便实现"返回"功能. ...