【BZOJ3331】[BeiJing2013]压力 Tarjan求点双
【BZOJ3331】[BeiJing2013]压力
Description
Input
Output
Sample Input
1 2
1 3
2 3
1 4
4 2
4 3
Sample Output
1
1
2
HINT
【样例解释】
设备1、2、3之间两两有链接,4只和1有链接。4想向2和3各发送一个数据包。显然,这两个数据包必须要经过它的起点、终点和1。
【数据规模和约定】
对于40%的数据,N,M,Q≤2000
对于60%的数据,N,M,Q≤40000
对于100%的数据,N≤100000,M,Q≤200000
题解:显然先用Tarjan求缩块。。。怎么求呢。。。基本功不扎实又去学了一发。
最后我们会得到一个树形结构,但是。。。怎么得到呢。。。其实对于每个块新建一个点连向块中的所有点即可。
然后就是一个类似于树的东西了,怎么统计树上有哪些路径必经一个点呢?差分即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=200010;
int n,m,q,top,tot,sum,cnt;
int sta[maxn],low[maxn],HEAD[maxn],NEXT[maxn<<1],TO[maxn<<1],head[maxn<<1],next[maxn<<2],to[maxn<<2];
int s[maxn<<1],fa[19][maxn<<1],Log[maxn<<1],dep[maxn<<1],Q[maxn<<1];
inline void ADD(int a,int b)
{
TO[cnt]=b,NEXT[cnt]=HEAD[a],HEAD[a]=cnt++;
}
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void tarjan(int x)
{
dep[x]=low[x]=++tot,sta[++top]=x;
for(int y,i=HEAD[x],t;i!=-1;i=NEXT[i])
{
y=TO[i];
if(!dep[y])
{
tarjan(y),low[x]=min(low[x],low[y]);
if(low[y]>=dep[x])
{
sum++;
do
{
t=sta[top--],add(sum,t),add(t,sum);
}while(t!=y);
add(sum,x),add(x,sum);
}
}
else low[x]=min(low[x],dep[y]);
}
}
void dfs(int x)
{
Q[++Q[0]]=x;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[0][x]) fa[0][to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
inline int lca(int a,int b)
{
int i;
if(dep[a]<dep[b]) swap(a,b);
for(i=Log[dep[a]-dep[b]];i>=0;i--) if(dep[fa[i][a]]>=dep[b]) a=fa[i][a];
if(a==b) return a;
for(i=Log[dep[a]];i>=0;i--) if(fa[i][a]!=fa[i][b]) a=fa[i][a],b=fa[i][b];
return fa[0][a];
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
//freopen("bz3331.in","r",stdin);
n=rd(),m=rd(),q=rd(),sum=n;
memset(head,-1,sizeof(head)),memset(HEAD,-1,sizeof(HEAD));
int i,j,a,b,c;
for(i=1;i<=m;i++) a=rd(),b=rd(),ADD(a,b),ADD(b,a);
cnt=0,tarjan(1),dep[1]=1,dfs(1);
for(i=2;i<=sum;i++) Log[i]=Log[i>>1]+1;
for(j=1;(1<<j)<=sum;j++) for(i=1;i<=sum;i++) fa[j][i]=fa[j-1][fa[j-1][i]];
for(i=1;i<=q;i++)
{
a=rd(),b=rd(),c=lca(a,b);
s[a]++,s[b]++,s[c]--,s[fa[0][c]]--;
}
for(i=sum;i;i--) a=Q[i],s[fa[0][a]]+=s[a];
for(i=1;i<=n;i++) printf("%d\n",s[i]);
return 0;
}
【BZOJ3331】[BeiJing2013]压力 Tarjan求点双的更多相关文章
- hdu 2460(tarjan求边双连通分量+LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...
- C++[Tarjan求点双连通分量,割点][HNOI2012]矿场搭建
最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双. 由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他 ...
- [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分)
[Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得 ...
- 6409. 【NOIP2019模拟11.06】困难的图论(Tarjan求点双)
题目描述 Description 给定由 n 个点 m 条边组成的无向连通图,保证没有重边和自环. 你需要找出所有边,满足这些边恰好存在于一个简单环中.一个环被称为简单环,当且仅当它包含的所有点都只在 ...
- 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)
题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...
- POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug
题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...
- [HNOI2012]矿场搭建(tarjan求点双)
题目 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无 ...
- BZOJ3331 [BeiJing2013]压力[圆方树+树上差分]
圆方树新技能get.具体笔记见图连通性问题学习笔记. 这题求无向图的必经点,这个是一个固定套路:首先,一张连通的无向图中,每对点双和点双之间是以一个且仅一个割点连接起来的(如果超过一个就不能是割点了) ...
- BZOJ3331: [BeiJing2013]压力
传送门 Tarjan的三大应用之一:求解点双联通分量. 求解点双联通分量.然后缩点,差分优化即可. //BZOJ 3331 //by Cydiater //2016.10.29 #include &l ...
随机推荐
- 查看Linux服务器CPU使用率、内存使用率、磁盘空间占用率、负载情况
[root@server script]# vi monitor.py #!/usr/bin/env python # -*- coding:utf-8 -*- #Author: nulige imp ...
- 我的MAC可能在设置环境变量的时候设置错了,现在整个MAC的vi,ls等命令都执行不了了。
1,在命令行中输入export PATH=/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin这样可以保证命令行命令暂时可以使用.命令执行完之后先不要关闭终端或者c ...
- 【Javascript 基础】比较 undefined 和 null 值
JavaScript 中有两个特数值: undefined和null,在比较它们的时候需要留心.在读取未赋值的变量或试图读取对象没有的属性时得到的就是 undefined 值. <!DOCTYP ...
- Android 完美退出 App 方法
大家都知道 Android 的 Activity 是存着历史栈的,比如从 A -> B -> C,C 完成 finish 后回到 B,把所有的Activity 都 finish了,程序就自 ...
- C++ 11 可变模板参数的两种展开方式
#include <iostream> #include <string> #include <stdint.h> template<typename T&g ...
- flask的分页功能
分页是个很通用的东西,在flask中,有一个macro的语法,类似于宏,我们可以将通用的东西通过macro写入单独的html文件以方便维护,减少代码量.下面是我的分页的macro文件render_pa ...
- _.pick lodash
http://lodash.think2011.net/pick _.pick(object, [props]) 创建一个从 object 中选中的属性的对象. 参数 object (Object) ...
- [LeetCode] Combinations——递归
Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...
- 使用lua扩展应用程序
全局变量的操作 void lua_getglobal(lua_State * L ,const char * name) 此函数从lua中取出一个名为name的全局变量并将其压入栈中. 如当lua文件 ...
- 聚类分析算法及SAS实现
聚类分析是用户细分里面最为重要的工具,而用户细分则是整个精准营销里面的基础. 聚类分析方法分为: 层次法:可分为凝聚式和分列式,适用于观测数比较少的情形 1.凝聚式:将每个观测都归为一类,然后每次都将 ...