Nearest Common Ancestors(LCA)
Description
A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.
Output
Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
//LCA 模板题,但是我自己想的 dfs+并查集 ,做完后看了看网上的LCA,发现与网上的离线LCA tarjan 算法不大一样,我想的是,递归后合并子集合,然后就查找要求的是否在同一个集合,在就输出即可。
查询时间复杂度 O(n)
#include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>
#include <string.h>
using namespace std;
#define MX 10005 int n,m;
int a,b;
int root,ok;
int in[MX]; // 入度
vector<int> edge[MX];
int f[MX]; void Init()
{
for (int i=;i<=n;i++)
edge[i].clear();
memset(in,,sizeof(in));
} int find_head(int x)
{
return x==f[x]?f[x]:f[x]=find_head(f[x]);
} void uni(int x,int y)
{
x = find_head(x);
y = find_head(y);
if (x!=y)
f[y]=x; //这个顺序很重要,
} void tarjan(int x)
{
for (int i=;i<(int)edge[x].size();i++)
{
tarjan(edge[x][i]);
uni(x,edge[x][i]);
if (ok) return;
//每次合并完子集合后,就查询同一集合
if (find_head(a)==find_head(b))
{
printf("%d\n",x);
ok=;
return ;
}
}
} int main()
{
int T;
cin>>T;
while (T--)
{
scanf("%d",&n);
Init();
m=n-;
for (int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
edge[u].push_back(v);
in[v]++;
}
for (int i=;i<=n;i++)
{
if (in[i]==)
root=i;
}
scanf("%d%d",&a,&b);
for (int i=;i<=n;i++) f[i]=i;
ok=;
tarjan(root);
}
return ;
}
Nearest Common Ancestors(LCA)的更多相关文章
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ 1330 Nearest Common Ancestors LCA题解
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19728 Accept ...
- pku 1330 Nearest Common Ancestors LCA离线
pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- poj 1330 Nearest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...
- [POJ1330]Nearest Common Ancestors(LCA, 离线tarjan)
题目链接:http://poj.org/problem?id=1330 题意就是求一组最近公共祖先,昨晚学了离线tarjan,今天来实现一下. 个人感觉tarjan算法是利用了dfs序和节点深度的关系 ...
- POJ 1330 Nearest Common Ancestors(LCA模板)
给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...
- POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...
- POJ 1330 Nearest Common Ancestors(Targin求LCA)
传送门 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26612 Ac ...
随机推荐
- util.string.js
ylbtech-JavaScript-util: util.string.js 字符串处理工具 1.A,JS-效果图返回顶部 1.B,JS-Source Code(源代码)返回顶部 1.B.1, ...
- python核心编程学习记录之数据库编程
- reduceByKey和groupByKey的区别
先来看一下在PairRDDFunctions.scala文件中reduceByKey和groupByKey的源码 /** * Merge the values for each key using a ...
- eclipse自动添加作者、日期等注释
使用eclipse的时候一般会添加自己的注释,标注日期作者等内容,我总结的添加注释的方式有两种:一.在新建class时自动添加注释:二.通过快捷键自动添加注释.下面分别描述一下添加方式. 一.新建cl ...
- const 使用方法具体解释
const使用方法具体解释 面向对象是C++的重要特性. 可是c++在c的基础上新添加的几点优化也是非常耀眼的 就const直接能够代替c中的#define 下面几点非常重要,学不好后果也也非常严重 ...
- Django——静态文件(如bootstrap)的配置
静态文件如CSS, javascript(如bootstrap), 图片等文件在django中的配置官方文档写的比较模糊,自己通过实验验证后并整理如下,以防遗忘,目前只整理了关于本地开发中的设置方式, ...
- icvEvalCARTHaarClassifier
/* *icvEvalCARTHaarClassifier *作用:通过计算haar特征值,来分配非叶子节点直到出现叶子节点,最后返回输出值val. */ float icvEvalCARTHaar ...
- sqlserver 中EXEC和sp_executesql使用介绍
sqlserver 中EXEC和sp_executesql使用介绍 MSSQL为我们提供了两种动态运行SQL语句的命令,各自是EXEC和sp_executesql;通常,sp_executesql则更 ...
- JS常用正则表达式大全
转载自:http://blog.csdn.net/lun379292733/article/details/8169807/ <script type="text/JavaScript ...
- IIS管理器如何添加网站
IIS服务器一些步骤 安装好iis后 右击网站按钮点击添加网站 网站名称填写无所谓,物理路径(注意是大路径,一个项目所有的文件在那个文件夹下), Ip地址自己定义最好是hosts文件已经绑定了域名的, ...