Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2

16

1 14

8 5

10 16

5 9

4 6

8 4

4 10

1 13

6 15

10 11

6 7

10 2

16 3

8 1

16 12

16 7

5

2 3

3 4

3 1

1 5

3 5

Sample Output

4

3

//LCA 模板题,但是我自己想的 dfs+并查集 ,做完后看了看网上的LCA,发现与网上的离线LCA tarjan 算法不大一样,我想的是,递归后合并子集合,然后就查找要求的是否在同一个集合,在就输出即可。

查询时间复杂度 O(n)

 #include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>
#include <string.h>
using namespace std;
#define MX 10005 int n,m;
int a,b;
int root,ok;
int in[MX]; // 入度
vector<int> edge[MX];
int f[MX]; void Init()
{
for (int i=;i<=n;i++)
edge[i].clear();
memset(in,,sizeof(in));
} int find_head(int x)
{
return x==f[x]?f[x]:f[x]=find_head(f[x]);
} void uni(int x,int y)
{
x = find_head(x);
y = find_head(y);
if (x!=y)
f[y]=x; //这个顺序很重要,
} void tarjan(int x)
{
for (int i=;i<(int)edge[x].size();i++)
{
tarjan(edge[x][i]);
uni(x,edge[x][i]);
if (ok) return;
//每次合并完子集合后,就查询同一集合
if (find_head(a)==find_head(b))
{
printf("%d\n",x);
ok=;
return ;
}
}
} int main()
{
int T;
cin>>T;
while (T--)
{
scanf("%d",&n);
Init();
m=n-;
for (int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
edge[u].push_back(v);
in[v]++;
}
for (int i=;i<=n;i++)
{
if (in[i]==)
root=i;
}
scanf("%d%d",&a,&b);
for (int i=;i<=n;i++) f[i]=i;
ok=;
tarjan(root);
}
return ;
}

Nearest Common Ancestors(LCA)的更多相关文章

  1. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

  4. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  5. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  6. [POJ1330]Nearest Common Ancestors(LCA, 离线tarjan)

    题目链接:http://poj.org/problem?id=1330 题意就是求一组最近公共祖先,昨晚学了离线tarjan,今天来实现一下. 个人感觉tarjan算法是利用了dfs序和节点深度的关系 ...

  7. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  8. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  9. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

随机推荐

  1. org.apache.hadoop.ipc.RemoteException: User: root is not allowed to impersonate root

    修改 core-site.xml文件 vim /usr/local/hadoop/etc/hadoop/core-site.xml 增加: <property> <name>h ...

  2. JPEG编码(一)

    JPEG编码介绍. 转自:http://blog.chinaunix.net/uid-20451980-id-1945156.html JPEG(Joint Photographic Experts ...

  3. netty handle处理流程

    server handlerAdded server channelRegistered server channelActive server read server channelInactive ...

  4. P6 EPPM 安装和配置指南

    In This Section Installation and Configuration Guide Manual Installation Guides P6 Professional Inst ...

  5. 构建Spring Boot程序有用的文章

    构建Spring Boot程序有用的文章: http://www.jb51.net/article/111546.htm

  6. IO流(二)I/O

    一.IO流概述 1.定义:Java的IO流是实现输入输出的基础,它可以方便地实现数据的输入/输出操作. 2.流的分类: (1)按流向来分:输入流和输出流 (2)按操作的数据来分:字节流和字符流 (3) ...

  7. 微信小程序 - 关于下拉刷新

    // 拉取数据 fetchData: function() { wx.request({ url: 'http://v.juhe.cn/toutiao/index', data: { type: '' ...

  8. 15款Java程序员必备的开发工具

    如果你是一名Web开发人员,那么用膝盖想也知道你的职业生涯大部分将使用Java而度过.这是一款商业级的编程语言,我们没有办法不接触它. 对于Java,有两种截然不同的观点:一种认为Java是最简单功能 ...

  9. CCF计算机职业资格认证 2015年3月第2题 数字排序 解法和思路

    问题描写叙述 给定n个整数,请统计出每一个整数出现的次数.按出现次数从多到少的顺序输出. 输入格式 输入的第一行包括一个整数n,表示给定数字的个数. 第二行包括n个整数.相邻的整数之间用一个空格分隔, ...

  10. 【Excle数据透视表】如何为数据透视表应用样式

    如下数据透视表样例,如何为该数据透视表设置样式呢? 步骤 单击数据透视表区域的任意单元格→数据透视表工具→设计→数据透视表样式→打开下拉箭头即可任意选择