Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2

16

1 14

8 5

10 16

5 9

4 6

8 4

4 10

1 13

6 15

10 11

6 7

10 2

16 3

8 1

16 12

16 7

5

2 3

3 4

3 1

1 5

3 5

Sample Output

4

3

//LCA 模板题,但是我自己想的 dfs+并查集 ,做完后看了看网上的LCA,发现与网上的离线LCA tarjan 算法不大一样,我想的是,递归后合并子集合,然后就查找要求的是否在同一个集合,在就输出即可。

查询时间复杂度 O(n)

 #include <iostream>
#include <stdio.h>
#include <vector>
#include <math.h>
#include <string.h>
using namespace std;
#define MX 10005 int n,m;
int a,b;
int root,ok;
int in[MX]; // 入度
vector<int> edge[MX];
int f[MX]; void Init()
{
for (int i=;i<=n;i++)
edge[i].clear();
memset(in,,sizeof(in));
} int find_head(int x)
{
return x==f[x]?f[x]:f[x]=find_head(f[x]);
} void uni(int x,int y)
{
x = find_head(x);
y = find_head(y);
if (x!=y)
f[y]=x; //这个顺序很重要,
} void tarjan(int x)
{
for (int i=;i<(int)edge[x].size();i++)
{
tarjan(edge[x][i]);
uni(x,edge[x][i]);
if (ok) return;
//每次合并完子集合后,就查询同一集合
if (find_head(a)==find_head(b))
{
printf("%d\n",x);
ok=;
return ;
}
}
} int main()
{
int T;
cin>>T;
while (T--)
{
scanf("%d",&n);
Init();
m=n-;
for (int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
edge[u].push_back(v);
in[v]++;
}
for (int i=;i<=n;i++)
{
if (in[i]==)
root=i;
}
scanf("%d%d",&a,&b);
for (int i=;i<=n;i++) f[i]=i;
ok=;
tarjan(root);
}
return ;
}

Nearest Common Ancestors(LCA)的更多相关文章

  1. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  2. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  3. pku 1330 Nearest Common Ancestors LCA离线

    pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...

  4. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  5. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  6. [POJ1330]Nearest Common Ancestors(LCA, 离线tarjan)

    题目链接:http://poj.org/problem?id=1330 题意就是求一组最近公共祖先,昨晚学了离线tarjan,今天来实现一下. 个人感觉tarjan算法是利用了dfs序和节点深度的关系 ...

  7. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  8. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  9. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

随机推荐

  1. django开发环境部署之pip、virtualenv、virtualenvwrapper

    step1:安装pip 在python中可以使用easy_install和pip安装python拓展但推荐使用pip Don't use easy_install, unless you like s ...

  2. kata-container环境搭建

    一.安装qemu 注意,目前kata-container所要求的qemu最低版本是v2.7.0.在笔者的环境下(Ubuntu16.04 VM),apt-get官方源的最高版本是v2.5.0.所以不要用 ...

  3. node-表单验证

    var http = require('http'); var url = require('url'); var fs = require('fs'); var querystring = requ ...

  4. 倍福TwinCAT(贝福Beckhoff)基础教程 松下伺服驱动器报错 81.0怎么办

    同步周期有问题   请确认MOTION的伺服周期是一致的,最好跟MAIN主程序也一样,所有周期都是2ms即可     更多教学视频和资料下载,欢迎关注以下信息: 我的优酷空间: http://i.yo ...

  5. datatables插件适用示例

    本文共四部分:官网 | 基本使用|遇到的问题|属性表 一:官方网站:[http://www.datatables.NET/] 二:基本使用:[http://www.guoxk.com/node/jQu ...

  6. vue相关知识点

    1.el-date-picker输入的时间范围需要两点 A.禁用键盘输入 :editable=false,否则虽然禁用,但是输入框还能输入 B.指定时间范围::picker-options=" ...

  7. Mybatis 存在多个日志时设置日志

    mybatis默认使用log4j,当有self4j这个日志jar包存在时会无法打印sql,请移除或者在工程启动时显示设置mybatis使用的日志类 log4j.logger.org.apache.ib ...

  8. 压力测试衡量CPU的三个指标:CPU Utilization、Load Average和Context Switch Rate

    分类: 4.软件设计/架构/测试 2010-01-12 19:58 34241人阅读 评论(4) 收藏 举报 测试loadrunnerlinux服务器firebugthread 上篇讲如何用LoadR ...

  9. HttpClient简介

    栏目:Web开发 作者:admin 日期:2015-05-02 评论:0 点击: 204 次   虽然在JDK的java net包中已经提供了访问 HTTP 协议的基本功能,但是对于大部分应用程序来说 ...

  10. 浅谈EntityFramework框架的使用

    第一步,建立一个类库,并且安装好EntityFramework框架还有CodingFirstUsingFluentApi安装包 第二步 : 第三步:配置好你的数据库连接信息,还有你需要操作的数据库,在 ...