给你多组数据集,例如给你很多房子的面积、房子距离市中心的距离、房子的价格,然后再给你一组面积、 距离,让你预测房价。这类问题称为回归问题。

  回归问题(Regression) 是给定多个自变量、一个因变量以及代表它们之间关系的一些训练样本,来确定它们的关系。其中最简单的一类是线性回归(Linear Regression)。

  线性回归函数的形式如下:

      (1)

  θj 是我们要求的系数。接下来介绍一下求θ 的两种方法,梯度下降(Gradient Descent)和正规方程(Normal Rquation )。

1. 梯度下降法

  描述:梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法

  公式:

   (2)

  其中,J(θ) 称为代价函数(Cost Function )或损失函数(Loss Function), 用来量度预测结果和标准结果之间的误差,常见的有交叉熵,均方误差,平均绝对值误差等。在这里使用均方误差。α是学习速率,取值自定,一般取比较小的数,如0.03

      (3)

    ( hθ(x) 是x经过待求的函数得出的结果,y(i) 是数据集中的结果)

  公式(2)的旨在求出最小的θj,把代价函数J(θ)降到最小。它的原理是θ不停地迭代,减去θ对应的代价函数在x的偏导,如果偏导是正的,那么J(θ)在该方向单增,减去这个正数后θ变小,J(θ)也会跟着变小;反之,如果偏导是负的,J(θ)单减,原θ减负数,θ变大,J(θ)减小。无论怎样,J(θ)都朝着减小的方向变化。值得注意的是,如果学习速率α偏大,那么θ在做差的话可能减过头甚至得到的新J(θ)比原来还要大,而如果学习速率α偏小,那么花费的时间会变长。

(结合图像更直观)

  梯度下降算法是一个不断迭代的过程,需要不断重复公式(2),直到J(θ)符合预期误差或者达到足够的迭代次数。

  具体步骤如下:

  step0: 初始化α,θ(任意值)和迭代次数;

  step1:利用公式(3) ,求J(θ);

  step2:利用公式(2),本次迭代的新θ;

  step3:重复step1 - step2

2. 正规方程

  利用正规方程可以直接计算计算θ,前提是(XTX)必须可逆

  

3. matlab实现

  3.1 初始化参数

data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
plotData(X, y) X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters % Some gradient descent settings
iterations = 1500;
alpha = 0.01;

  3.2 计算代价函数

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.
predictions = X*theta;
sqrErrors = (predictions - y).^2;
J = 1/(2*m) * sum(sqrErrors);
% =========================================================================
end

  3.3 梯度下降并迭代

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
x = X(:,2);
for iter = 1:num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
% J = alpha * (1/m) * (X * theta - y)' ; theta(1) = theta(1) - J * ones(m,1);
theta(2) = theta(2) - J * x; % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end
end

  3.4 绘图

% Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100); % initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end % Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1'); % Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

  

  

  

机器学习笔记(一)—— 线性回归问题与Matlab求解的更多相关文章

  1. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  2. Stanford机器学习笔记-1.线性回归

    Content: 1. Linear Regression 1.1 Linear Regression with one variable 1.1.1 Gradient descent algorit ...

  3. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  4. Python机器学习笔记:不得不了解的机器学习面试知识点(1)

    机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...

  5. cs229 斯坦福机器学习笔记(一)-- 入门与LR模型

    版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...

  6. 机器学习笔记5-Tensorflow高级API之tf.estimator

    前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...

  7. 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归

    一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...

  8. Python机器学习笔记:sklearn库的学习

    网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...

  9. Python机器学习笔记:不得不了解的机器学习知识点(2)

    之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局 ...

随机推荐

  1. window下隐藏apache版本和PHP脚本等敏感信息

    隐藏Apache信息 1.1 主配置中启用httpd-default.conf 文件: conf/httpd.Conf 找到httpd-default.conf,删除前面的注释“#”,改成如下 Inc ...

  2. seleenium与Vs结合

    Vs 自带自动化测试录制工具.selenium则是开源的大众工具.在使用发现vs 自带的工具录制方便,但是修改很难.但是可以提供后续的BUG管理和邮件通知,自动构建等功能.selenium在.net平 ...

  3. Azure CDN:氮气加速已开启,司机们请做好准备

    在上一周,我们向各位小伙伴介绍了通过 Azure CDN 高级版服务为 HTTPS 应用加速的做法,漏掉的小伙伴可以点击这里穿越回去补课哦.那我们今天讲点什么呢?当然是 CDN 最重要的价值:改善应用 ...

  4. 利用ASP.NET里自带的站点地图工具制作网站站点地图

    站点地图很方便能快速给我们导航我们要去访问的地址,能按层级关系分门别类,给用户一个很好的用户体验,很好的看到自己当前所在的网站位置 站点地图,又称网站地图,它就是一个页面,上面放置了网站上所有页面的链 ...

  5. K星异客

    http://baike.baidu.com/view/222058.htm 这部改编自基恩·布汝尔1995年出版的同名小说的电影在当年的十月档票房榜上称冠.本来这部电影的外星人主人公属意于威尔.史密 ...

  6. js获取及判断键盘按键的方法

    这篇文章主要介绍了js获取及判断键盘按键的方法,涉及JavaScript键盘事件的获取及键值的判定技巧,具有一定参考借鉴价值,需要的朋友可以参考下   本文实例讲述了js获取及判断键盘按键的方法.分享 ...

  7. 分治——sqtx

    题目描述 Given a string s, partition s such that every substring of the partition is a palindrome. Retur ...

  8. jQuery获取Select选择的Text和Value[转载]

    语法解释:1. $("#select_id").change(function(){//code...});   //为Select添加事件,当选择其中一项时触发2. var ch ...

  9. Poj(1426),BFS

    题目链接:http://poj.org/problem?id=1426 可能数据比较水,没有用到大整数.刚刚开始的时候,想从后往前加0或者1,发现有点难写,后来想到先放一个1,再1*10,1*10+1 ...

  10. 表面积最小(POJ3536)

    题目链接:http://poj.org/problem?id=3536 在体积固定的情况下,表面积最小时的长,宽,高. 这里枚举长,宽,根据体积计算高. #include <iostream&g ...