题目大意:给你$n,m,p(p \in \rm prime)$,求出$C_{n + m}^m\bmod p(可能p\leqslant n,m)$

题解:卢卡斯$Lucas$定理,$C_B^A\bmod p$等于把$A,B$写成$p$进制时每一位的组合数相乘,设$A=a_n\times p^n+a_{n-1}\times p^{n-1}+\cdots+a_0$,$B=b_m\times p^m+b_{m-1}\times p^{m-1}+\cdots+b_0$,$C_B^A\bmod p=\prod\limits_{i=0}^{\min\{n,m\}}C_{b_i}^{a_i}$

卡点:

C++ Code:

#include <cstdio>
#define maxn 100010
int Tim, n, m, mod;
long long fac[maxn], inv[maxn];
inline long long CC(long long a, long long b) {
if (a < b) return 0;
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
inline long long C(long long a, long long b) {
if (a < b) return 0;
if (a <= mod) return CC(a, b);
long long res = 1;
while (a && b && res) {
res = res * CC(a % mod, b % mod) % mod;
a /= mod, b /= mod;
}
return res;
}
int main() {
scanf("%d", &Tim);
fac[0] = fac[1] = inv[0] = inv[1] = 1;
while (Tim --> 0) {
scanf("%d%d%d", &n, &m, &mod);
for (long long i = 2; i <= mod; i++) fac[i] = fac[i - 1] * i % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[i] * inv[i - 1] % mod;
printf("%lld\n", C(n + m, m));
}
return 0;
}

[洛谷P3807]【模板】卢卡斯定理的更多相关文章

  1. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  2. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

  5. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  6. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  7. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  8. [洛谷P4720] [模板] 扩展卢卡斯

    题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...

  9. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  10. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

随机推荐

  1. java基础IO流 复制键盘录入的目录,复制其中的.java文件到指定目录,指定目录中有重名,则改名 对加密文件计算字母个数

    package com.swift.jinji; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; im ...

  2. WIN10使用安装包安装Mysql5.6+JDBC

    很多教程教的是安装绿色版mysql或者是安装zip版的mysql,没什么不好,各有千秋,今天要教大家的是使用mysql-installer-community-5.6.43.0.msi安装mysql5 ...

  3. Apache Maven(二):构建生命周期

    Maven 约定的目录结构 我要遵循Maven已经约定好的目录结构,才能让maven在自动构建过程中找到对应的资源进行构建处理.以下是maven约定的目录结构: 项目名称 |-- pom.xml :M ...

  4. PHP生成特定长度的纯字母字符串

    PHP中,md5().uniqid()函数可以返回32位和13位不重复的字符串,但是这些字符串都可能包含有数字.如果需要纯字母的字符串,而且长度不定,比如8位,那么直接用这两个函数无法达到效果. 这时 ...

  5. 史上最强大的wordpress后台框架redux-framework安装及使用

    redux-framework的相关链接 Redux的官方网站:https://reduxframework.com/ Redux文档查询:https://docs.reduxframework.co ...

  6. 17-比赛1 B - 子串计算 Chef and his string challenge (string的运用)

    Chef's best friend Jerry gives Chef a string A and wants to know the number of string A that can be ...

  7. python-3高级特征

    1-切片 L = ["qinzb",'fengyong','bingyan'] L[0:3] #截取从索引0开始到索引3结束(不包含索引3) L[:3] #如果索引是从0开始则可省 ...

  8. 奇异值分解(SVD)原理详解及推导

    在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decompos ...

  9. Android 本应用数据清除管理器DataCleanManager

    1.整体分析 1.1.源代码先给出了,可以直接Copy. /** * 本应用数据清除管理器 */ public class DataCleanManager { /** * * 清除本应用内部缓存(/ ...

  10. SuperHelper——灵活通用的、开源的.Net ORM微型框架

    SuperHelper是博主利用业余时间编写的一个ORM微型框架,除了可以提高开发效率,与其它ORM框架相比,博主更加喜欢SuperHelper的使用简单.适用范围广的特点. 简介 SuperHelp ...