题目大意:给你$n,m,p(p \in \rm prime)$,求出$C_{n + m}^m\bmod p(可能p\leqslant n,m)$

题解:卢卡斯$Lucas$定理,$C_B^A\bmod p$等于把$A,B$写成$p$进制时每一位的组合数相乘,设$A=a_n\times p^n+a_{n-1}\times p^{n-1}+\cdots+a_0$,$B=b_m\times p^m+b_{m-1}\times p^{m-1}+\cdots+b_0$,$C_B^A\bmod p=\prod\limits_{i=0}^{\min\{n,m\}}C_{b_i}^{a_i}$

卡点:

C++ Code:

#include <cstdio>
#define maxn 100010
int Tim, n, m, mod;
long long fac[maxn], inv[maxn];
inline long long CC(long long a, long long b) {
if (a < b) return 0;
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
inline long long C(long long a, long long b) {
if (a < b) return 0;
if (a <= mod) return CC(a, b);
long long res = 1;
while (a && b && res) {
res = res * CC(a % mod, b % mod) % mod;
a /= mod, b /= mod;
}
return res;
}
int main() {
scanf("%d", &Tim);
fac[0] = fac[1] = inv[0] = inv[1] = 1;
while (Tim --> 0) {
scanf("%d%d%d", &n, &m, &mod);
for (long long i = 2; i <= mod; i++) fac[i] = fac[i - 1] * i % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
for (int i = 2; i <= mod; i++) inv[i] = inv[i] * inv[i - 1] % mod;
printf("%lld\n", C(n + m, m));
}
return 0;
}

[洛谷P3807]【模板】卢卡斯定理的更多相关文章

  1. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  2. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷——P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...

  5. 洛谷 P3807 【模板】卢卡斯定理

    P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...

  6. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  7. 【洛谷P3807】(模板)卢卡斯定理

    卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...

  8. [洛谷P4720] [模板] 扩展卢卡斯

    题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...

  9. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  10. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

随机推荐

  1. ElasticSearch 集群原理

    节点 一个运行中的EasticSearch 被称为一个节点,而集群是由多个用于拥有相同cluster.name配置的节点组成,它们共同承担数据和负载的压力,当有新的节点加入或移除,集群会重新平均分布所 ...

  2. 关于Pycharm基本操作笔记

    创建 project(工程,译音:破拽科特) 1.Create New project(创建一个新的工程,译音:科瑞特 纽 破摘科特) 2.pure python(纯派森,译音:皮忧儿 派森) 3.l ...

  3. python中enumerate函数使用

    enumerate()说明 enumerate()是python的内置函数 enumerate在字典上是枚举.列举的意思 对于一个可迭代的(iterable)/可遍历的对象(如列表.字符串),enum ...

  4. python--Pandas(一)

    一.Pandas简介 1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一 ...

  5. git push 时 fatal: Unable to create 'D:/phpStudy/WWW/green_tree/.git/index.lock': File exists.解决办法

    找到自己的项目,找到.git文件夹,进去把目标文件删除即可 或者使用rm -rf 命令(如果没有那个文件件或者文件,将隐藏文件打开就可以看到了)

  6. Sublime package control错误:There are no packages available for installation

    查了很多资料都没有解决. 改host---无效 复制一个文件的什么的,我看到版本比我的旧,就没有用 终于最后一个解决了.最终解决方案 解决: 更新下Package Control就好了: prefer ...

  7. spring源码学习中的知识点

    一.循环依赖 循环依赖就是循环引用,就是两个或多个bean之间互相持有对方. 1.构造器循环依赖 表示通过构造器注入造成的循环依赖,此依赖是无法解决的,只能抛出BeanCurrentlyInCreat ...

  8. 11.1,nginx集群概念

    集群介绍 为什么要用集群      

  9. SetConsoleCtrlHandler

    Excerpt: Registering a Control Handler Function   This is an example of the SetConsoleCtrlHandler fu ...

  10. luogu3317 [SDOI2014]重建

    原来矩阵树定理对于边是概率的情况也是适用的qwqwq. ref #include <iostream> #include <cstdio> #include <cmath ...