题目

给出一个循环for(int i=A;i!=B;i+=C) 在mod (1<<k) 下是否可以退出循环

是,输出时间,否输出FORVEER


题解:

题意可以变换成 A+Cx=B (mod 1<<k)

去掉mod之后变成 Cx=(B-A)+(1<<K)*y 是否有整数解

令 a=C,b=(1<<K) c=B-A

转化为ax+by=c的问题

exgcd即可

注意开longlong 要写1LL<<k 输出x最小正整数

 #include<cstdio>
#include<algorithm>
#include<cstring>
typedef long long ll;
using namespace std;
ll A,B,C,x,y,k,a,b,g,c;
ll exGcd(ll a,ll b,ll &x,ll &y)
{
if (b==) return x=,y=,a;
ll r=exGcd(b,a%b,y,x);
y-=(a/b)*x;
return r;
}
int main()
{
while (scanf("%lld%lld%lld%lld",&A,&B,&C,&k) && A+B+C+k!=)
{ a=C;
b=(1LL<<k);
c=B-A;
g=exGcd(a,b,x,y);
if (c%g!=) puts("FOREVER");
else
{
b/=g;
c/=g;
x=(x%b*c%b+b)%b;
printf("%lld\n",x);
} }
return ;
}

POJ 2115 C-Looooops | exgcd的更多相关文章

  1. poj 2115 C Looooops——exgcd模板

    题目:http://poj.org/problem?id=2115 exgcd裸题.注意最后各种%b.注意打出正确的exgcd板子.就是别忘了/=g. #include<iostream> ...

  2. Poj 2115 C Looooops(exgcd变式)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...

  3. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  4. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  5. POJ 2115 C Looooops(Exgcd)

    [题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...

  6. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  7. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  8. POJ 2115 C Looooops

    扩展GCD...一定要(1L<<k),不然k=31是会出错的 ....                        C Looooops Time Limit: 1000MS   Mem ...

  9. poj 2115 C Looooops(扩展gcd)

    题目链接 这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa. 后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b.还 ...

  10. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

随机推荐

  1. 近年来爆发的CVE漏洞编号

    1.Office漏洞 Office漏洞是大部分APT组织最喜爱的漏洞,Office在个人办公电脑使用量大,对针对性目标是最佳的外网入口,效果也是最直接的. CVE编号  漏洞类型 使用组织 CVE-2 ...

  2. Python常用函数记录

    Python常用函数/方法记录 一. Python的random模块: 导入模块: import random 1. random()方法: 如上如可知该函数返回一个[0,1)(左闭右开)的一个随机的 ...

  3. python-无参函数

    #!/usr/local/bin/python3 # -*- coding:utf-8 -*- ''' #-----------定义函数---------- def func1(): "te ...

  4. source tree 使用心得

    SourceTree 是 Windows 和Mac OS X 下免费的 Git 和 Hg 客户端管理工具,同时也是Mercurial和Subversion版本控制系统工具.支持创建.克隆.提交.pus ...

  5. sparkStreaming统计各平台最近一分钟实时注册收入 时间段,平台,金额,订单数

    样例数据: __clientip=10.10.9.153&paymentstatus=0&__opip=&memberid=89385239&iamount=1& ...

  6. java线程安全(单例模式)(转载)

    原文链接:http://www.jameswxx.com/java/%E8%AF%B4%E8%AF%B4%E5%8D%95%E4%BE%8B%E6%A8%A1%E5%BC%8F/ 单例模式?多么简单! ...

  7. PHP代码审计5-实战漏洞挖掘-cms后台登录绕过

    cms后台登录绕过 练习源码:[来源:源码下载](数据库配置信息有误,interesting) 注:需进行安装 1.创建数据库 2.设置账号密码,连接数据库 3.1 正常登录后台,抓包分析数据提交位置 ...

  8. 2.栅格的类中同时设置col-md-* col-sm-*的作用

    1.一般设定成这样的话,在小屏幕上会堆叠在一起 <div class="row"> <div class="col-md-4 ">COL ...

  9. 线性表(List)

    1.什么是线性表(List)? 零个或多个数据元素的有限序列. (1)元素之间是有序的. (2)线性表强调是有限的. 2.线性表有哪些操作? (1)线性表的创建和初始化,InitList (2)判空, ...

  10. 《移动App性能评测与优化》读书笔记

    第一章:内存   内存的主要组成索引: Native Heap:Native代码分配的内存,虚拟机和Android框架本身也会分配 Dalvik Heap:Java代码分配的对象 Dalvik Oth ...