HDU 6051 If the starlight never fade(原根+推式子)
题目大意:
设\(f(i)\)为使\((x+y)^i \equiv x^i (mod\ p)\)成立的(x,y)的对数。其中\(1 \leq x \leq p-1 , 1\leq y\leq m\),m,p给定且p是一个质数。求\(\sum_{i=1}^{p-1}i*f(i)\),p<=1e9+7,m<=p-1
思路
我们考虑用原根去代换x,y。
设g为p的一个原根,\(g^a\equiv x(mod \ p),g^b \equiv y(mod \ p)\)。
然后我们用\(g\)去代换\(x,y\)。\((g^a+g^b)^i\equiv g^{a*i}(mod\ p)\)然后我们在式子两边同时除一个\(g^{a*i}\)。得到\((1+g^{b-a})^i\equiv 1(mod\ p)\)
设\(1+g^{b-a}\equiv g^k(mod\ p)\)(因为原根的性质所以我们一定可以找到这样的k)。
此时原式为\(g^{k*i} \equiv 1(mod\ p)\)由费马小定理可以到到\(p-1 \mid k*i\)。
这就要求k为\(\frac{p-1}{gcd(p-1,i)}\)的倍数(即至少包含p-1所特有的因子)。由于\(0<k<p-1\),为什么k不能取0呢?因为$g^{b-a}不会为0,所以\(1+g^{b-1}> 1\)。
所以可以得到这样的k的数量是\(\frac{p-1}{\frac{p-1}{gcd(p-1,i)}}-1=gcd(p-1,i)-1\),这里因为k不能取0和p-1,所以要减1。
又因为\(1+g^{b-a} \equiv g^k(mod\ p)\)得\(g^b \equiv(g^k-1)*g^a (mod\ p)\),\(y\equiv x*(g^k-1)(mod\ p)\)。每有一个k,y对应一个x。所以对于一个y有\(gcd(p-1,i)-1\)个x对应。
所以可以得出\(f(i)=m*(gcd(p-1,i)-1)\)。
\(\sum_{i=1}^{p-1}i*f(i)\)
\(=m\sum_{i=1}^{p-1}i*gcd(p-1,i)-m*\frac{(p-1)*p}{2}\)
重点是如何求\(\sum_{i=1}^{p-1}i*gcd(p-1,i)\)。
\(\sum_{i=1}^{p-1}i*gcd(p-1,i)\)
显然d是p-1的约数
\(=\sum_{d\mid p-1}d\sum_{i=1}^{p-1}i*[gcd(p-1,i)==d]\)
\(=\sum_{d\mid p-1}d^2\sum_{i=1}^{\frac{p-1}{d}}i*[gcd(\frac{p-1}{d},i)==1]\)
然后有一个神奇的变换。
\(\sum_{i=1}^{t}i*[gcd(t,i)==1]=\frac{t*\varphi(t)+[t==1]}{2}\)
为什么?
令\(t=\frac{p-1}{d}\)就是\(\sum_{i=1}^{t}i*[gcd(t,i)==1]\)
其实就是求1到t中与t互质的数的和。
由更相减损术得若\(gcd(n,i)=1\)则\(gcd(n,n-i)=1\)
所以一个与\(t\)互质的数\(x\),\(t-x\)也与\(t\)互质。
所以与t互质的数成对出现,设这一对数为a,b,有\(a+b=t\)。
所以\(\sum_{i=1}^{t}i*[gcd(t,i)==1]=\frac{t*\varphi(t)+[t==1]}{2}\)
故原式可以化为
\(\sum_{d\mid p-1}d^2\sum_{i=1}^{\frac{p-1}{d}}i*[gcd(\frac{p-1}{d},i)==1]\)
\(=\sum_{d\mid p-1}d^2*\frac{\frac{p-1}{d}*\varphi(\frac{p-1}{d})+[\frac{p-1}{d}==1]}{2}\)
带回去求解即可。
复杂度?\(O(能过)\),因为求约数可以先扫出质数来优化,所以\(\sqrt{\frac{p}{lnp}}*\sqrt{p}=\sqrt{\frac{p^2}{lnp}}\)差不多两亿,不是很大。而且求欧拉函数是求p-1的约数的约数,一定比\(\sqrt{p}\)小,所以能过?
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define int long long
const int N=1001000;
const int mod=1e9+7;
bool book[N];
int prime[N],cnt,inv,T;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
void pre_work(){
for(int i=2;i<=1000000;i++){
if(book[i]==0)prime[++cnt]=i;
for(int j=1;j<=cnt&&prime[j]*i<=1000000;j++){
book[prime[j]*i]=1;
if(i%prime[j]==0)break;
}
}
}
int ksm(int x,int b){
int tmp=1;
while(b){
if(b&1)tmp=tmp*x%mod;
b>>=1;
x=x*x%mod;
}
return tmp;
}
int phi(int x){
int tmp=x;
int ans=x;
for(int i=1;i<=cnt&&prime[i]*prime[i]<=x;i++){
if(tmp%prime[i]==0){
ans=ans/prime[i]*(prime[i]-1);
while(tmp%prime[i]==0)tmp/=prime[i];
}
}
if(tmp>1)ans=ans/tmp*(tmp-1);
return ans;
}
int work(int x){
int tmp=0;
for(int i=1;i*i<=x;i++){
if(x%i==0){
int a=i*i%mod;
int b=x/i;
int c=phi(b);
int d=(b==1);
tmp=(tmp+a*(b*c%mod+d)%mod*inv%mod)%mod;
if(x/i>i){
int hh=x/i;
int a=hh*hh%mod;
int b=x/hh;
int c=phi(b);
int d=(b==1);
tmp=(tmp+a*(b*c%mod+d)%mod*inv%mod)%mod;
}
}
}
return tmp;
}
signed main(){
T=read();
pre_work();
inv=ksm(2,mod-2);
int now=0;
while(T--){
now++;
int m=read(),p=read();
int tmp=((m*work(p-1)%mod-m*(p-1ll)%mod*p%mod*inv%mod)%mod+mod)%mod;
printf("Case #%lld: %lld\n",now,tmp);
}
return 0;
}
HDU 6051 If the starlight never fade(原根+推式子)的更多相关文章
- HDU 6051 - If the starlight never fade | 2017 Multi-University Training Contest 2
/* HDU 6051 - If the starlight never fade [ 原根,欧拉函数 ] | 2017 Multi-University Training Contest 2 题意: ...
- HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识
求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...
- 【hdu6051】If the starlight never fade
Portal --> hdu6051 Solution 神仙题qwq好吧我个人感觉是神仙题 这题其实有一个比较野路子的做法..就是..打表观察..反正场上ckw大佬就是这样把这题A穿的 ...
- HDU 4870 Rating(概率、期望、推公式) && ZOJ 3415 Zhou Yu
其实zoj 3415不是应该叫Yu Zhou吗...碰到ZOJ 3415之后用了第二个参考网址的方法去求通项,然后这次碰到4870不会搞.参考了chanme的,然后重新把周瑜跟排名都反复推导(不是推倒 ...
- hdu 1465:不容易系列之一(递推入门题)
不容易系列之一 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdu 5646 DZY Loves Partition 二分+数学分析+递推
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5646 题意:将n分成k个正整数之和,要求k个数全部相同:并且这k个数的乘积最大为多少?结果mod 1e^9 ...
- 2017"百度之星"程序设计大赛 - 复赛1003&&HDU 6146 Pokémon GO【数学,递推,dp】
Pokémon GO Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 2175 汉诺塔IX (递推)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2175 1,2,...,n表示n个盘子.数字大盘子就大.n个盘子放在第1根柱子上.大盘不能放在小盘上. ...
- HDU 2077 汉诺塔IV (递推)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2077 还记得汉诺塔III吗?他的规则是这样的:不允许直接从最左(右)边移到最右(左)边(每次移动一定是 ...
随机推荐
- AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中?
AVL树: 最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间的管理用到了AVL树. 红黑树: 平衡二叉树,广泛用在C++的STL中.如map和set都是用红黑树实现的. ...
- Unity脚本中可以引用的类型
Hierarchy(层级视图)面板里的对象,或者 Project(工程视图)里的Prefab.
- CDR发展史-CorelDRAW经历了哪些版本?
1989年CorelDRAW横空出世,它引入了全彩矢量插图和版面设计程序,这在计算机图形领域掀起了一场风暴般的技术革新.两年后,Corel又推出了首款一体化图形套件(第 3 版),将矢量插图.版面设计 ...
- Unity2D 小游戏之 RocketMouse
这个小游戏源自这里.这几天闲时捡了点 Unity(很久没有摸它了),顺手将这个小游戏移植到了 Unity5.5.0,除了 Parallax Scrolling 还有点小问题外,其它功能全部完整.部分代 ...
- 郑晔谈 Moco 框架的开发:写一个好的内部 DSL ,写一个表达性好的程序
作者:张龙 出处:http://www.infoq.com/cn/news/2013/07/zhengye-on-moco 郑晔谈Moco框架的开发:写一个好的内部DSL,写一个表达性好的程序 作者 ...
- SpringMVC请求@RequestParam中文乱码解决
private String encodeStr(String str) { try { return new String(str.getBytes("ISO-8859-1"), ...
- MyBatis学习总结(6)——调用存储过程
一.提出需求 查询得到男性或女性的数量, 如果传入的是0就女性否则是男性 二.准备数据库表和存储过程 create table p_user( id int primary key auto_incr ...
- 为什么要重写toString()方法
因为在System.out.println(类的对象名)时,类的对象名是个引用,如果不重写,就输出引用地址. 其实实际是这样的System.out.println(类的对象名.toString()), ...
- POJ——T2186 Popular Cows || 洛谷——P2341 [HAOI2006]受欢迎的牛
http://poj.org/problem?id=2186 || https://www.luogu.org/problem/show?pid=2341 Time Limit: 2000MS M ...
- 使用BabeLua在cocos2d-x中编辑和调试Lua
使用BabeLua在cocos2d-x中编辑和调试Lua BabeLua是一款基于VS2012/2013的Lua集成开发环境,具有Lua语法高亮,语法检查.自己主动补全.高速搜索,注入宿主程序内对Lu ...