[Usaco2010 Mar]gather 奶牛大集会

题目

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。 考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。

INPUT

第一行:一个整数N * 第二到N+1行:第i+1行有一个整数C_i * 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。

OUTPUT

第一行:一个值,表示最小的不方便值。

SAMPLE

INPUT

5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3

OUTPUT

15

解题报告

这破水题水了我一上午

树规

显然我们需要找出一个根来先算出一个不那么优的解,再去更新其他的解

第一步很容易,第二步也很容易(我tm卡了一个上午)

设目前的答案为$ans$,儿子节点的答案为$next$

$$next=ans-size_{son}\times w_{i}+(tot-size_{son})\times w_{i}$$

显然我们可以用高深的数学知识乘法分配率把式子化简成这样:

$$next=ans+(tot-2\times size_{son})\times w_{i}$$

那么我们使$tot<2\times size_{son}$,后面的式子就是负的,$ans$就被更新得更小了

 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
inline int read(){
int sum();
char ch(getchar());
for(;ch<''||ch>'';ch=getchar());
for(;ch>=''&&ch<='';sum=sum*+(ch^),ch=getchar());
return sum;
}
struct edge{
int e,w;
edge *n;
}a[],*pre[];
int tot;
inline void insert(int s,int e,int w){
a[++tot].e=e;
a[tot].w=w;
a[tot].n=pre[s];
pre[s]=&a[tot];
}
typedef long long L;
int n;
L c[],size[],dis[];
L ans,sum;
inline L dfs(int u,int fa){
size[u]=c[u];
L ret(dis[u]*c[u]);
for(edge *i=pre[u];i;i=i->n){
int e(i->e);
if(e==fa)continue;
dis[e]=dis[u]+i->w;
ret+=dfs(e,u);
size[u]+=size[e];
}
return ret;
}
inline void cal(int u,int fa){
for(edge *i=pre[u];i;i=i->n){
int e(i->e);
if(e==fa)continue;
if(sum<size[e]<<){
ans+=(sum-(size[e]<<))*i->w;
cal(e,u);
}
}
}
int main(){
memset(pre,NULL,sizeof(pre));
n=read();
for(int i=;i<=n;++i)
c[i]=read();
for(int i=;i<n;++i){
int x(read()),y(read()),z(read());
insert(x,y,z),insert(y,x,z);
}
ans=dfs(,);
sum=size[];
cal(,);
printf("%lld",ans);
}

[Usaco2010 Mar]gather 奶牛大集会的更多相关文章

  1. 【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP

    [BZOJ][Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  2. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP

    [Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...

  3. 【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    1827: [Usaco2010 Mar]gather 奶牛大集会 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 354[Sub ...

  4. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会( dp + dfs )

    选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x ...

  5. BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP

    BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP 题意:Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  6. 嘴巴题4 「BZOJ1827」[Usaco2010 Mar] gather 奶牛大集会

    1827: [Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  7. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...

  8. 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会(树形dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1827 仔细想想就好了,, 每个点维护两个值,一个是子树的费用,一个是除了子树和自己的费用.都可以用d ...

  9. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP + 带权重心

    Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...

随机推荐

  1. 同一个Tomcat下不同项目之间的session共享

    最近发现项目运行过程中经常会抛出一个 NullPointerException的异常,经检查发现异常出现的地方是日志模板,一阵检查,正常无误 (把所有记录日志的地方都点了一遍,心里是崩溃的),万念俱灰 ...

  2. E20171015-hm

    quirk   n. 怪癖; 奇事,巧合; 突然的弯曲; propagation  n. 宣传; 传播,传输,蔓延,扩展,波及深度; [生]繁殖法,[地]传导; 培养; immediate  adj. ...

  3. php的类型转换

    转自:http://www.tianzhigang.com/article.asp?id=280 PHP的数据类型转换属于强制转换,允许转换的PHP数据类型有: (int).(integer):转换成 ...

  4. PropertyInfo 类

    [AttributeUsage(AttributeTargets.Property)] //Models 特性        public class CanWriteAttribute : Attr ...

  5. 开启和安装Kubernetes 基于Docker For Windows

    0.最近发现,Docker For Windows Stable在Enable Kubernetes这个问题上是有Bug的,建议切换到Edge版本,并且采用下文AliyunContainerServi ...

  6. Salvation -- ---广搜 + 限定方向 ,

    这个欣求 , 在迷宫里密室了方向 , 走过了一个地方 不做标记 还一个劲 , 找不到媳妇不亏 . 这个题 我跳了两个坑 ,  1 : 习惯性添加标记走过的 位置  ,导致所有的位置都能 走过一遍 , ...

  7. 327 Count of Range Sum 区间和计数

    Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.Ra ...

  8. iOS keychain入门

    学了很久的iOS,一直都是明文保存用户名和密码在本地,手机一般都是自己用的,而且非越狱手机东西也不怎么能拿到数据,所以也就没在乎那么多,当然,这是不科学的.悄悄的说,这块一直不是我写的~~~ 用户隐私 ...

  9. Angular——流程控制指令

    基本介绍 (1)ng-repeat,类似于for循环,对数组进行遍历 (2)ng-switch on,ng-switch-when,类似于switch,case 基本使用 ng-repeat < ...

  10. CentOS 7 使用 yum 安装 MariaDB 与 MariaDB 的简单配置

    闲置已久的空间环境配置忘得差不多了,今天得空整理,重置了磁盘重新搭建环境,首先安装MariaDB的数据库,在这里记录下安装过程,以便以后查看. 1.安装MariaDB 安装命令 yum -y inst ...