[bzoj3037/2068]创世纪[Poi2004]SZP_树形dp_并查集_基环树
创世纪 SZP bzoj-3037/2068 Poi-2004
题目大意:给你n个物品,每个物品可以且仅可以控制一个物品。问:选取一些物品,使得对于任意的一个被选取的物品来讲,都存在一个没有被选取的物品,而且选取的个数最大。
注释:$1\le n \le 10^6$。
想法:显然,和骑士类似的,是一个基环树森林。如果A物品可以控制B物品,那就有B物品向A物品连边。对于每一个基环树,如果这个基环树是树的话显然变成树形dp入门题,暴力树形dp即可。然后对于基环树来讲,我们依然记录环上两点,分别以这两点为根,然后特判树形dp即可。
最后,附上丑陋的代码... ...
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 1000010
using namespace std;
int n,m,ans,now,tot;
int to[N],nxt[N],head[N],f[N],g[N],fa[N],ra[N],rb[N];
inline void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
int find(int x)
{
return (fa[x]==x)?x:(fa[x]=find(fa[x]));
}
void dfs(int x)
{
int t=1<<30;
g[x]=0;
for(int i=head[x];i;i=nxt[i])
{
if(to[i]!=now)
dfs(to[i]);
g[x]+=max(f[to[i]],g[to[i]]);
t=min(t,max(f[to[i]],g[to[i]])-g[to[i]]);
}
f[x]=g[x]+1-t;
}
int main()
{
scanf("%d",&n);
int a;
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=n;i++)
{
scanf("%d",&a);
if(find(a)!=find(i))
{
add(a,i);
fa[fa[a]]=fa[i];
}
else
ra[++m]=a,rb[m]=i;
}
for(int i=1;i<=m;i++)
{
dfs(ra[i]),now=ra[i];
dfs(rb[i]),a=f[rb[i]];
f[ra[i]]=g[ra[i]]+1;
dfs(rb[i]),ans+=max(a,g[rb[i]]);
}
printf("%d",ans);
return 0;
}
小结:基环树dp是一种常见的,树形dp带基环树的处理方法。这里有一个问题(By JhinLzh),问什么输出答案上面的for循环中的第一个dfs有用?明明在第二个dfs中所有的f和g都被更新了,为什么还要dfs?因为在第一个dfs中我们对f是强行负值,这样对于一些叶子节点来讲t值是没有更改的,这就导致f值在最后是一个极小值,这样的f是不会更新答案的。如果不写第一个dfs,使得一些在本不能更新答案的点更新了答案,导致答案错误。所以第一个dfs是必要的。
[bzoj3037/2068]创世纪[Poi2004]SZP_树形dp_并查集_基环树的更多相关文章
- 【BZOJ3037/2068】创世纪/[Poi2004]SZP 树形DP
[BZOJ3037]创世纪 Description applepi手里有一本书<创世纪>,里面记录了这样一个故事……上帝手中有着N 种被称作“世界元素”的东西,现在他要把它们中的一部分投放 ...
- BZOJ_2068_[Poi2004]SZP_树形DP
BZOJ_2068_[Poi2004]SZP_树形DP Description Byteotian 中央情报局 (BIA) 雇佣了许多特工. 他们每个人的工作就是监视另一名特工. Byteasar 国 ...
- hdu-----(4514)湫湫系列故事——设计风景线(树形DP+并查集)
湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
- BZOJ.1576.[Usaco2009 Jan]安全路经Travel(树形DP 并查集)
题目链接 BZOJ 洛谷 先求最短路树.考虑每一条非树边(u,v,len),设w=LCA(u,v),这条边会对w->v上的点x(x!=w)有dis[u]+dis[v]-dis[x]+len的距离 ...
- 创世纪 BZOJ3037 & [Poi2004]SZP BZOJ2068
分析: 树形DP中的一种,基环树DP 针对每一个环跑DP,f[i],g[i]分别表示选或者不选,之后我们注意每次遍历的时候,不要重复遍历. 附上代码: #include <cstdio> ...
- BZOJ3037 创世纪[基环树DP]
实际上基环树DP的名字是假的.. 这个限制关系可以看成每个点有一条出边,所以就是一个内向基环树森林. 找出每个基环树的环,然后对于树的部分,做DP,设状态选或不选为$f_{x,0/1}$,则 $f_{ ...
- Poetize4 创世纪
3037: 创世纪 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 123 Solved: 66[Submit][Status] Description ...
- 为创世纪图书馆(Library Genesis)作镜像
简介 Library Genesis的Wikipedia条目中的介绍是: Library Genesis or LibGen is a search engine for articles and b ...
- 编程哲学之C#篇:01——创世纪
我们能否像神一样地创建一个世界? 对于创建世界而言,程序员的创作能力最接近于神--相对于导演,作家,漫画家而言,他们创建的世界(作品)一旦完成,就再也不会变化,创建的角色再也不会成长.而程序员创建的世 ...
随机推荐
- codevs2147数星星(哈希)
2147 数星星 时间限制: 3 s 空间限制: 64000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小明是一名天文爱好者,他喜欢晚上看星星.这天,他从淘 ...
- P3187 [HNOI2007]最小矩形覆盖
传送门 首先这个矩形的一条边肯定在凸包上.那么可以求出凸包然后枚举边,用类似旋转卡壳的方法求出另外三条边的位置,也就是求出以它为底最上面最右边最左边的点的位置.离它最远的点可以用叉积求,最左最右的可以 ...
- distpicker三级联动,动态改变省市信息
一.引入3个js文件 <script type="text/javascript" src="js/distpicker.data.js">< ...
- Netty(2) - HelloWorld
Netty:作用场景. 1)Netty可以基于socket实现远程过程调用(RPC). 2)Netty可以基于WebSocket实现长连接. 3)Netty可以实现Http的服务器,类似于Jetty, ...
- ACM_百度的面试(单调栈)
百度的面试 Time Limit: 2000/1000ms (Java/Others) Problem Description: 在一个二维平面,从左到右竖立n根高度分别为:a[1],a[2],... ...
- 10 在C#中读取文件
我们在前一个练习中已经了解了如何在C#控制台程序(console)中读取用户的输入.现在我们要学习如何从一个文件中读取内容.在下面的练习中,你要格外小心.关于文件的操作,一不小心会损失你的重要文件. ...
- synchronized关键字详解(一)
synchronized官方定义: 同步方法支持一种简单的策略防止线程干扰和内存一致性错误,如果一个对象对多个线程可见,则对该对象变量的所有读取或写入都是通过同步方法完成的(这一个synchroniz ...
- 在Django中使用redis:包括安装、配置、启动。
一.安装redis: 1.下载: wget http://download.redis.io/releases/redis-3.2.8.tar.gz 2.解压 tar -zxvf redis-.tar ...
- Caffe2:ubuntu修改链接方式ln
参考:文件和目录命令-文件重定向 ln 使用caffe2,产生了此种情况: from caffe2.python import workspace >>WARNING:root:This ...
- 获取qq音乐json数据---某课网音乐app学习
移动端qq音乐地址:https://m.y.qq.com/ .抓取QQ音乐数据 请求首页时,有如下链接,回调了jsonp https://c.y.qq.com/splcloud/fcgi-bin/p. ...