支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间。特征空间的维数可能非常高。如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高维空间中这个内积,即K( x, x′) =<φ( x) ⋅φ( x′) > 。那么支持向量机就不用计算复杂的非线性变换,而由这个函数 K(x, x′) 直接得到非线性变换的内积,使大大简化了计算。这样的函数 K(x, x′) 称为核函数

核函数包括线性核函数、多项式核函数、高斯核函数等,其中高斯核函数最常用,可以将数据映射到无穷维,也叫做径向基函数(Radial Basis Function 简称 RBF),是某种沿径向对称的标量函数。 [1]  通常定义为空间中任一点x到某一中心xc之间欧氏距离单调函数 ,可记作 k(||x-xc||), 其作用往往是局部的,即当x远离xc时函数取值很小。

根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。采用核函数技术可以有效地解决这样问题。
设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入空间X到特征空间F的映射,其中F属于R(m),n<<m。根据核函数技术有:
K(x,z) =<Φ(x),Φ(z) > (1)
其中:<, >为内积,K(x,z)为核函数。从式(1)可以看出,核函数将m维高维空间的内积运算转化为n维低维输入空间的核函数计算,从而巧妙地解决了在高维特征空间中计算的“维数灾难”等问题,从而为在高维特征空间解决复杂的分类或回归问题奠定了理论基础。
核函数方法的广泛应用,与其特点是分不开的: [2] 
(1)核函数的引入避免了“维数灾难”,大大减小了计算量。而输入空间的维数n对核函数矩阵无影响,因此,核函数方法可以有效处理高维输入。
(2)无需知道非线性变换函数Φ的形式和参数.
(3)核函数的形式和参数的变化会隐式地改变从输入空间到特征空间的映射,进而对特征空间的性质产生影响,最终改变各种核函数方法的性能。
(4)核函数方法可以和不同的算法相结合,形成多种不同的基于核函数技术的方法,且这两部分的设计可以单独进行,并可以为不同的应用选择不同的核函数和算法

六、到底什么是核函数

七、RBF核函数

八、RBF核函数中的gamma

九、SVM思想解决回归问题

机器学习(十一) 支持向量机 SVM(下)的更多相关文章

  1. 机器学习(十一) 支持向量机 SVM(上)

    一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督 ...

  2. 机器学习之支持向量机—SVM原理代码实现

    支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...

  3. 机器学习算法 - 支持向量机SVM

    在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案 ...

  4. 【机器学习】支持向量机SVM

    关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要 ...

  5. python机器学习之支持向量机SVM

    支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Sup ...

  6. 机器学习:支持向量机(SVM)

    SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这 ...

  7. 机器学习-5 支持向量机SVM

    一.概念和背景 SVM:Support Vector Machine 支持向量机. 最早是由Vladimir N. Vapnik和Alexey Ya. Chervonenkis在1963年提出的. 目 ...

  8. 吴裕雄--天生自然python机器学习:支持向量机SVM

    基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...

  9. 机器学习模型-支持向量机(SVM)

    二.代码实现 import numpy as np from sklearn import datasets from sklearn.model_selection import train_tes ...

随机推荐

  1. BZOJ 2287 DP+容斥

    思路: 先处理出来f[j]表示这i个物品都可用 填满容量j的方案数 容斥一发 处理出来g[j]=g[j-w[i]] 表示i不能用的时候 填满容量j的方案数 //By SiriusRen #includ ...

  2. IBM 总架构师:话说程序员的职业生涯

    作者:IBM 软件集团大中华区总架构师 寇卫东 有一些年轻的程序员向我咨询,将来的路应该怎么走?俗话说,条条大路通罗马.不同的路都能走向成功.到底选哪条路,取决于自己的兴趣.可能有程序员会问:如果还没 ...

  3. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  4. python 3.x 学习笔记16 (队列queue 以及 multiprocessing模块)

    1.队列(queue) 用法: import queue q = queue.Queue() #先进先出模式 q.put(1) #存放数据在q里 作用: 1)解耦    2)提高效率 class qu ...

  5. MySQL 5.6.26 通过frm & ibd 恢复数据过程

    在A服务器上创建数据库yoonroot(yoon)> show create table yoon\G*************************** 1. row *********** ...

  6. Oracle PL/SQL开发基础(第三十三弹:EXCEPTION_INIT)

    如果有一些异常并没有异常名称,比如一些ORA-开头的异常并没有一个友好的预定义的异常定义,此时在WHEN子句中无法使用具体的异常名称,必须要使用OTHERS异常处理器进行捕捉.通过EXCEPTION_ ...

  7. 优动漫结合Photoshop怎么画草地?

    今天继续技法教学~草地的技法,PS教学~但是很简单,都是默认工具,而且是常用工具VS常用设置.你肯定会学会的! 草地教程,就到这里啦!有兴趣的可以尝试画一画哦,想要Get到更多有关优动漫的信息包括软件 ...

  8. “双十二”年终盛典,Guitar Pro邀您一起倾情共舞

    躲过了双十一,躲不过双十二,隐约昨天还是双十一,马上双十二又叕来了,弱弱的问一句“你们的手长粗了来了吗?”在这即将结束的年终盛典里,各商家又将如“双十一”般纷纷使出浑身解数,作为吉他最佳拍档的编曲软件 ...

  9. day19-1 迭代器,三元表达式,列表推导式,字典生成式,

    目录 迭代器 可迭代对象 迭代器对象 总结 三元表达式(三目表达式) 列表推导式 字典生成式 迭代器 可迭代对象 拥有iter方法的对象就是可迭代对象 # 以下都是可迭代的对象 st = '123'. ...

  10. Pyhton学习——Day39

    # CSS的常用属性# 1 颜色属性# <div style="color:rgb(255,0,0)">ppppp</div># 2 字体属性# font- ...